
Inversion and general invariance in Space-Time

Martin B. van der Marka,∗, John G. Williamsonb

aPhilips Research Europe, HTC34, 5656 AE Eindhoven, The Netherlands
bUniversity of Glasgow, School of Engineering, Glasgow G12 8LT, Scotland

Abstract

A general formula for division in a relativistic Clifford-Dirac algebra is derived. Where division is undefined
turns out, in many cases, to correspond to areas of physical interest, such as the light cone, invariant
quantities in electromagnetism, and the basis set of quantities in the Dirac equation. Apart from such
areas, where there has already been significant development in science, new sets of inter-related quantities,
involving the spin and the total energy for example, are sugested as possibilities for further investigation
and development.
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1. Introduction

The Clifford-Dirac algebra provides a basis for spin-1/2 relativistic quantum mechanics, Maxwell elec-
tromagnetism and advanced geometry. Despite the fact that the algebra has proven to be a powerful basis
of physical theory it, in common with any Dirac algebra, is not a division algebra. In this paper we will
study division in the Clifford-Dirac algebra C`1,3 and derive the most general case for inversion. This then
leads to the notion of the general invariants that, through their implied symmetries, necessarily lie at the
basis of all physical theory.

Relativistic algebras, such as any Dirac algebra and the Clifford algebra C`1,3 in particular, are not
division algebras in that there are areas other than zero where division is not defined. Though this may
seem an undesirable feature mathematically, and indeed is known to cause problems in certain areas[10],
physically it is required to properly parallel relativistic space-time. In particular, for non-zero 4-vectors on
the light cone where the invariant interval goes to zero, division by this quantity is manifestly undefined.
The Clifford algebra C`1,3, often denoted the space-time algebra or just the STA for short, has been designed
to parallel as closely as possible the nature of space-time [1, 2, 3, 4, 5, 6, 7, 8]. More recently other authors
have noted that, because C`1,3 is isomorphic to the base elements of a particular Dirac algebra [9], another
appropriate name for it is a Clifford-Dirac algebra and this name is also in current usage [10].

In any event, even though the algebra is not a division algebra, it appears to be of utility, not only
in describing spin-1/2 [5, 11] but also, for example, in describing aspects of physics such as the Maxwell
equations[3, 13]. In this context, the development leads, not only to a description of the physics which
is comparable to that of other methods, but that also is in some respects more elegant. In particular,
the formulation leads to all four Maxwell equations at once [2, 4, 8, 12, 13], rather than to the pair of
inhomogenous equations for the field and the homogeneous equations for the dual field separately as is the
case in the more usual textbook approach [15]. How can this be? How is it that a non-division algebra can
successfully describe wide areas of physics? The physical reason is that the world observed in experiment does
scale relativistically. That scaling, for the mass of a particle as it approaches light-speed for example, tends
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to infinity, and hence its inverse quantity tends to zero. The quantities describing dynamics in Maxwell and
Dirac theory, however, are 4-vector differentials, for which the scaling of each component taken separately is
precisely unity. It is not in the case of individual elements, but in combinations of elements where division
becomes undefined. In fact one may turn the perspective around, and say that, for properly relativistic
algebras only quantities with this unit property may be important for a local description of dynamics - as
they lead to possible unitary operators which conserve important quantities such as energy and momentum.

Now one comes to the physical utility of inverses (and hence division) in this context. Division may seem
familiar, and is so for simple numbers: the inverse of three is a third. What, physically, is the inverse of
space? time? space-time? space divided by time? space-time on the light-cone? If one can find an inverse,
the product of this with its starting quantity leads to a unit Lorentz scalar. It may be suspected, as indeed
turns out to be the case, that finding such combinations may lead, in turn, to unitary processes which leads
in turn to“allowed” and interesting physics. The extension of the unit relativistic vectors of space and time
leads to a rich set of combinations of derived elements, corresponding to combinations of physical areas,
volumes and point, as well as base lines, where division is undefined.

The structure of this paper is as follows. For those unfamiliar with Dirac-Clifford algebras the essential
properties are described[1, 2, 3, 4, 5, 6, 7, 8, 13]. Inverses are found for various quantities of importance,
including the general case for the algebra considered here. It is shown that the areas where division is
undefined correspond to null-hyperplanes which cut through the extended structure of the algebra. It is
argued that many of these null-hyperplanes correspond to limiting cases of physical interest, such as the
zero-length interval (null-vector) of space-time in Einstein’s special relativity, the corresponding case in
energy-momentum and invariant quantities important in electromagnetism. Some of these particular cases
are discussed. One of these corresponds to most of the terms in the Dirac equation, but suggests an extra
missing term which may be that leading to the proper description of charge as well as half-integral spin.
This may help complete a program to describe the nature of charge which Dirac pursued unsuccessfully in
the fifties[20]. Other combinations with important invariants, hitherto having had little or no attention in
the literature, are uncovered which may be of interest for future study. The form of the general case is
discussed, and it is argued that this may lead to energy minima with non-zero rest masses and hence an
understanding of the underlying nature of the potential at the root of the Higgs mechanism.

2. The Clifford-Dirac algebra

Dirac developed his algebra in the first instance to pass to a linearisation of the energy momentum
Hamiltonian in relativistic quantum mechanics. Clifford algebras have been used, through their geometric
product over the basis vectors of space and time, to represent the full range of boosts and non-commuting
rotations between them. The sub-algebra of the Dirac γ-matrix algebra excluding γ5 is isomorphic to the
Clifford algebra C`1,3. It is this real Clifford-Dirac algebra that we will investigate here. Note that the
standard Dirac γ-matrices, not including γ5, are a representation of this Clifford algebra, but any specific
matrix representation is irrelevant to any of the arguments which follow. A contravariant 4-vector A is
written

A = (A0,A) = γµAµ = γ0A0 + γ1A1 + γ2A2 + γ3A3 (1)

with the Aµ being real coefficients. Note that lower indices are used in the case of contravariant vectors, as
this simplifies the notation for squared quantities. Summation is implied for repeated Greek indices which
run from 0 to 3. Latin indices run from 1 to 3.

The 16 terms of the full geometric product between two 4-vectors is defined as

AB = A ◦B +A ∧B (2)

the first part of which is the symmetric part and corresponds to the 4-vector scalar product in this simple
case:

A ◦B =
1

2
(AB +BA) (3)
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It is worth noting that in the present paper the symmetric part of the geometric product A ◦ B is denoted
by a small circle in order to avoid any confusion with the dot product: x · y , the scalar or inner product
between ordinary 3-vectors (denoted by boldface).

The second part of the product, the antisymmetric part, behaves in some respects (at least between two
vectors) like the usual Heaviside-Gibbs cross product of 3-space, ×, but is denoted here by the wedge symbol
[4]:

A ∧B =
1

2
(AB −BA) (4)

For definiteness, the generators of the algebra are mapped onto the unit basis vectors of Minkowski space-
time as

γ0 = ct̂, γ1 = x̂, γ2 = ŷ, γ3 = ẑ (5)

This choice will only be of importance for the physical interpretation of our results. The anti-commutator
of the basis vectors is

{γµ, γν} = γµν + γνµ = 2gµν11 , (6)

where the metric tensor gµν = gµν = diag(+ − − −) has the Lorentz metric,

γ20 = −γ2i = 1 , i = {1 . . . 3} (7)

Note that a convention γµγν = γµν is adopted, not only in an effort to keep the terms compact, but also to
make explicit that these are new elements in a group of sixteen orthogonal elements [6].

The square of a vector A gives precisely the Lorentz-invariant scalar product:

A2 = γµAµγνAν = γ20A
2
0 + γ21A

2
1 + γ22A

2
2 + γ23A

2
3

= A2
0 −A2

1 −A2
2 −A2

3 (8)

and the proper invariant interval ds of space-time is

(ds)2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (9)

where ds is both positive-definite and time-like (γ0) for subluminal world lines.
Starting with the unit basis elements γµ, using the antisymmetric product, Eq. (4), unit elements of

higher grade can be formed. There are 6 independent terms of the form γµγν which we abbreviate with γµν ,
the bivector unit basis elements. Just as the γi form a basis for translations in Minkowski 4-space, the higher
grade elements γi0 form the basis elements of boosts (Lorentz transformations) and the γjk the basis elements
of rotations, with their proper non-commutative properties included. Note that γµν = −γνµ for µ 6= ν; any
exchange of adjacent indices generates a factor of minus one. There are four independent trivectors (the
pseudo 4-vector basis elements) of the form γλγµγν = γλµν , and a single independent quadrivector γ0123,
the pseudoscalar. Together with the generator basis vectors γµ and the scalar γ20 = 1 we have 16 linearly
independent unit elements which, together with their counterparts with negative sign, form an algebraic
group of 32 elements. The real algebra with this group requires only the positive 16 unit basis because the
minus sign is absorbed in the real coefficients. So called multivectors can be formed using these elements.
The most general multivector Ψ = s+ v + b+ r + t+ q, containing all basis elements, is defined as

Ψ = 11s0 + γ0v0 +

 γ1
γ2
γ3

v +

 γ10
γ20
γ30

b +

 γ23
γ31
γ12

r +

 γ023
γ031
γ012

t + γ123t0 + γ0123q0 (10)

Here we have distinguished terms which naturally have three components, such as the Lorentz “boosts” b and
“rotations” r as well as the 3-vector parts of 4-vectors with boldface characters. For example the 3-vector
part of the 4-vector v is denoted v. Each of these corresponds to the column vector preceding it and the
notation implies an inner product between the two. See, for example Eq. (21) in what follows. The advantage
of the 3-component column vector notation is that it makes explicit the “3-space plus 1-time” structure of
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(the 4-dimensional generators of) the algebra, including their reflection properties (time-reversal and parity).
Also it allows for a seamless transformation to the familiar Heaviside-Gibbs vector algebra notation, as will
become apparent in the next section. By keeping the unit basis elements explicit, we not only allow for
distinction of the grade of a multivector component, but also find these distinctions to be of value in the
classification of inverses.

A short calculation shows that γ20 = γ2i0 = γ2123 = 1, γ2i = γ2ij = γ20ij = γ20123 = −1. Of the 10 elements
which square to −1, not one commutes with all other elements, that is, none behave like the complex number
i =
√
−1. There is no γ5 unless one explicitly adds the unit imaginary. That is, the Dirac γ-matrices are

representations of the group that forms the basis for the Clifford algebra of spacetime C`1,3 [1, 5, 6, 9], but
the Dirac matrix algebra M4(C/ ) (the algebra of complex 4 × 4 matrices) is the complexification of both
the spacetime algebra: C/ ⊗ C`1,3 ' M4(C/ ) and the Majorana algebra C/ ⊗ C`3,1 ' M4(C/ ) [6]. For the
even subalgebra {1, γi0, γjk, γ0123}, the quadrivector γ0123 takes the role of the unit imaginary number

√
−1

because it commutes with all the even elements. The sixteen element set generated from the basis γµ on
the Lorentz metric (+ − − −) forms a “geometric” Dirac algebra, the Clifford algebra of space-time C`1,3.

For the quotients γµ = 1/γµ, which correspond to the covariant basis vectors, we have

γ0 = γ0, γi = −γi (11)

As a consequence of the quotient, the vector differential operator is a reciprocal vector and so has opposite
space sign to the vector:

d =
∂

γµ∂xµ
= γµ∂µ = gµνγµ∂ν

= γ0∂0 − γ1∂1 − γ2∂2 − γ3∂3 = γ0∂0 −

 γ1
γ2
γ3

∇ (12)

Clearly, the operation of this differential operator d on some multivector Ψ also results in a change of grade.
The scalar 4-space Laplacian operator (d’Alembertian) is:

d2 = d ◦ d = ∂20 − ∂21 − ∂22 − ∂23 = ∂20 −∇
2 (13)

it does not change the grade of any multivector.

3. Brief introduction to the notation

In this paper we make use of the real Dirac-Clifford algebra C`1,3, also known the space-time algebra
(STA) or geometric algebra[4], to express electromagnetic fields and current densities as well as 4-component
Dirac wave functions. Central to this algebra is the so-called geometric product of two vectors A and B,
which is defined as AB = A ◦ B + A ∧ B which consists of a symmetric part A ◦ B = (AB + BA)/2 and
an anti-symmetric part A∧B = (AB −BA)/2. First we introduce the unit basis vectors of space and time
eµ, which behave exactly like the Dirac matrices γµ with their commutation relations eµeν − eνeµ = 2gµν
with gµν = diag(+ − − −). By multiplication, a total of 16 so-called (unit) multivectors can be formed,
for example e0123 ≡ γ0γ1γ2γ3 which has the property that e20123 = −1 and it takes the role of the unit
imaginary, despite the fact that it only commutes with the even sub group {11, eµν , e0123}. The conventional
Dirac algebra is the complexification of the real geometric algebra C`1,3. We will only use real numbers and
give up complex numbers and it is the price we have to pay in order to keep a geometric interpretation and
proper basis for Maxwell’s equations on the one hand and a relativistic quantum mechanics on the other
hand. The four-potential A = (A0,A) is

A = e0A0 + e1A1 + e2A2 + e3A3 ≡ e0A0 +

 e1
e2
e3

A (14)
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where we have adopted a mixed notation using 3-space vectors to separate the time-like (e0) and space-like
(ei) parts of the four vector (eµ). This allows us to use the standard vector calculus notation and the Dirac
algebra simultaneously. To many readers, this will appear to be helpful in recognizing known physics even
if geometric algebra is new to them. The column notation shows the unit basis vectors (ei, ej , ek), with
i = {i, i0, jk, 0jk} (cyclic), as they project onto the unit vectors (ex, ey, ez) of 3-space. The most general
multivector, having all possible components, is M = s+ v + b+ r + t+ q or

M = s0 + e0v0 +

 e1
e2
e3

v +

 e10
e20
e30

 b +

 e23
e31
e12

 r +

 e023
e031
e012

 t + e123t0 + e0123q0 (15)

The letters refer to the nature the of the basis element: scalar, vector (polar vector), bivector (boost (polar
vector) and rotor (axial vector)), trivector (pseudo vector or axial vector) and quadrivector (pseudoscalar).
In our notation, it is this implicit projection that makes the connection between the Dirac matrices and the
geometry of space-time. The differential operator is

d = e0∂0 − e1∂1 − e2∂2 − e3∂3 (16)

The differential operating on the 4-potential is given by the geometric product dA = d ·A+ d ∧A and this
can be written explicitly as

dA = ∂0A0 +∇ ·A−

 e10
e20
e30

 (∂0A +∇A0)−

 e23
e31
e12

∇×A (17)

which consists of a scalar part L = d · A and a bivector part F = d ∧ A, we write dA = L+ F . In case we
put L = 0 we have the Lorenz gauge condition:

L = ∂0A0 +∇ ·A = 0 (18)

The equivalent of the Faraday or field-strength tensor Fµν is represented by the double bivector F :

F =

 e10
e20
e30

E −

 e23
e31
e12

B =

 e10
e20
e30

 (E + e0123B) (19)

The bivector F is also referred to as the Riemann-Silberstein vector. For a general multivector M , the
hermitian conjugate is M† = e0M̃e0, where the tilde means reversal, for example ÃB = BA in case of two
vectors.
The derivative of F yields the field differentials of Maxwell’s equations, dF = j:

dF = e0∇ ·E +

 e1
e2
e3

 (∇×B − ∂0E) + e123∇ ·B −

 e023
e031
e012

 (∇×E + ∂0B)

= e0j0 +

 e1
e2
e3

 j = j (20)

where j is the 4-current density, the source term which must be put in by hand. It is also the part that is
associated with the self-energy problem of electrical (point) charge. It is the bold purpose of this paper to
find a detailed mathematical description of the structure of charged particles (and their motion) as knotted
solutions of fields, potentials, wave functions and energy flow. We will show that we can write both sides
of Maxwell’s equations in terms of two complex scalar fields α and β: dF (α, β) = j(α, β). In doing so, j
may take the form of a quantum probability 4-current with wave function Ψ(α, β) that obeys relativistic
quantum mechanics.
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4. The Maxwell equations

Starting with a vector 4-potential A(x) defined over all space-time x and using the algebra with the
vector differential introduced above, Maxwell’s equations may be derived in a particularly beautiful and
compact way. This result has been derived by other authors [3, 4, 6, 8]. Our purpose here is twofold; firstly
to define physical quantities for later use in the discussion and secondly to give an example of our explicit
but compact 3-vector column notation introduced in the previous section. In what follows natural units are
used, ε0, h̄ and c are set equal to unity.

Let the 4-potential be A = (A0(t,x),A(t,x)) with A0 the scalar potential and A the vector potential.
In accordance with the previous section:

A = γµAµ = γ0A0 +

 γ1
γ2
γ3

A (21)

The 4-derivative is dA = d ◦ A + d ∧ A. To aid visualisation, this may be written in terms of the familiar
3-space forms, such as A, the electric field E and magnetic field B, and the standard dot and cross product,
whilst the full 4-space algebra is maintained by means of the positional column notation introduced above
for the proper components. With these conventions, the 16 (= 1 + 3 + 3 · 2 + 3 · 2) terms of the full product
dA may be written as

dA = ∂0A0 +∇ ·A−

 γ10
γ20
γ30

 (∂0A +∇A0)−

 γ23
γ31
γ12

∇×A (22)

which is the sum of a scalar part L and a bivector part F , so we can write dA = L+ F , with

L = d ◦A = ∂0A0 +∇ ·A (23)

The scalar L is intimately related to the gauge. For an arbitrary scalar function Λ the gauge freedom is
expressed by the transformation A→ A+ dΛ and hence L→ L+ d2Λ. Setting L = 0 (for all coordinates)
corresponds to the Lorenz gauge condition.

In Eq. (22) we can identify, in the usual way, the electric field E = −∂0A−∇A0 and the magnetic field
B = ∇ ×A. Together these terms form a six-component object known as the Riemann-Siberstein vector
which we denote by F and which corresponds to the antisymmetric Faraday or field-strength tensor Fµν

[15], but here it takes the spinor form [16, 17]:

F =

 γ10
γ20
γ30

E −

 γ23
γ31
γ12

B =

 γ10
γ20
γ30

 (E + γ0123B) (24)

In Eq. (24) the electric and magnetic fields have a bivector form, a boost γi0 and a rotor γij respectively,
rather than appearing as a set of tensor components.

Consider the dynamics of dA, and set L = 0 at all coordinates, so that dL = 0. Usually at this point, a
4-vector current density source term j is introduced:

d(dA) = d2A = d(L+ F ) = dL+ dF = j (25)

so that
dF = j (26)

which represents all the Maxwell equations [8]. In the full geometrical product for Eq. (26), dF = d◦F+d∧F ,
the vector part and the trivector part, are identified as the homogeneous and inhomogeneous Maxwell
equations respectively:

d ◦ F = j (27)

d ∧ F = 0 (28)
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The trivector part Eq. (28) has no source term, expressing the absence of magnetically charged monopoles,
consistent with a vector-potential description where B =∇×A. As in Eq. (22), Eqs. (27) and (28) may be
expanded in terms of the full 4-space products, and terms may be gathered in the familiar 3-space quantities
to give

γ0∇ ·E = γ0j0 (29) γ1
γ2
γ3

 (∇×B − ∂0E) =

 γ1
γ2
γ3

 j (30)

γ123∇ ·B = 0 (31)

−

 γ023
γ031
γ012

 (∇×E + ∂0B) = 0 (32)

which we recognise immediately as the full set of Maxwell equations, with all the correct signs, though
with the proper multivector form of the equations within the algebra made explicit. Starting from the
4-potential A and retaining all products within the algebra, both the homogeneous Eqs. (28), (31) and (32)
and inhomogeneous Eqs. (27), (29) and (30) equations are contained in a single equation, Eq. (26), without
the need to introduce a separate dual field. This is in contrast to other developments using either standard
notation [15] or the algebra of forms [18], where in both approaches two equations are required to cover the
homogeneous and inhomogeneous Maxwell equations respectively. By carrying every part of the product
the full Maxwell equations have been obtained, with all the correct signs, and nothing more.

5. On invariants and the hyperplanes where division is not defined

Let us now pass to the main purpose of this paper, a discussion of where and how division is, and is
not, defined within the Clifford-Dirac algebra at hand. The aim is to distinguish those special multivectors
Ψ where a “multiplicative division” or inverse does not exist so that an inverse Ψ−1 cannot be found such
that ΨΨ−1 = 1, and hence where division is not defined [10].

In many algebras, including the real, the complex and the quaternion algebras, zero is the only element
which has no inverse. Here there are many more combinations for which an inverse does not exist. These
are referred to as null-hyperplanes, since they correspond to objects of zero length, a so-called null-vector
(such as a Riemann-Silberstein vector for the electromagnetic field), as also proposed by Kramers [16] and
Weyl [? ]. We first discuss some specific familiar cases and then go on to present a general form for the
inverse.

First consider the 4-vector case:

Ψ = v = γ0v0 +

 γ1
γ2
γ3

v (33)

Ψ−1 = v/v2 = v/(v20 − v2) =
Ψ

v20 − v2
= Ψ/τ2 (34)

Note, for the case of the space-time coordinates v0 = ct and v = x, the divisor corresponds to the invariant
interval squared τ2 and that all inverses are scaled, correctly, according to this interval. On the lightcone
this interval goes to zero, and hence there is no inverse if v20 − v2 = 0. That is the plane where division is
undefined corresponds exactly to the physical limitations imposed by the speed of light. This theme will be
picked up again in the discussion in the context of that special form of division, the differential. There are,
of course, many interesting invariants with the vector form. For example the corresponding invariant in the
case of the 4-vector potential is a charge invariant [20].

Consider further the combination of a scalar and a Lorentz boost:

Ψ = s+ b (35)

Ψ−1 = (s− b)/(s20 − b2) (36)
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This is the form for the energy and momentum density in the field, in which case the divisor corresponds to
an invariant mass m0. This will be expanded on in the discussion. This has no inverse if s20 − b2 = 0 and
corresponds to the lightcone as well. The divisor is a true scalar in the algebra and, as such, is invariant
under a Lorentz transformation, a property shared with the pseudoscalar, which will appear in some of the
more general cases which follow. Note that the inverse vector is another vector in the same direction whereas
in the case of scalar plus boost the inverse aquires a minus sign in the spatial component.

It is possible to extend the vector null-hyperplane to include the scalar and the pseudoscalar as well:

Ψ = s+ v + q (37)

Ψ−1 = (s− v − q)/(s20 − v20 + v2 + q20) (38)

This has no inverse if v20 − v2 = s20 + q20 . In the context of electromagnetism it contains the gauge term
(scalar) as well as the quadrivector (the dual gauge). We see that the addition of a gauge field shifts the
null-multivectors off the lightcone. This has applications in the description of massive, rather than massless
systems.

The combination with all the elements that square to +1 also has a null-hyperplane:

Ψ = s+ γ0v0 + b+ γ123t0 (39)

Ψ−1 = (s− γ0v0 − b− γ123t0)/(s20 − v20 − b2 − t20) (40)

There is no inverse, for example, if s20 − b2 = v20 + t20. Multivectors with all elements squaring to +1 will
prove essential in the derivation of a completely general inverse as will be shown by the end of this section.
Also, The same set of basis elements are those necessary in the splitting of the relativistic Klein-Gordon
equation to obtain the linear form of the Dirac equation as will be returned to in the discussion.

Consider the following:

Ψ = s0 + γ0v0 + γ123t0 + γ0123q0 (41)

Ψ−1 =
s0 − γ0v0 − γ123t0 − γ0123q0

s20 − v20 − t20 + q20
(42)

This has no inverse if s20 + q20 = v20 + t20, and connects all the single element “time like” parts of the algebra.
Dynamics over this set would imply an interaction between time and the gauge fields, which, it may be
speculated, could lead to extra quantisation conditions on any full set of interacting fields [21].

In view of the previous examples, it is now clear that the following formula helps in finding Ψ−1 in many
(simple) cases:

Ψ−1 ' Ψ�/(s20 − v20 + v2 − b2 + r2 + t2 − t20 + q20) (43)

Here we have defined the “diamond” conjugate of a multivector Φ as

Φ� = 2〈Φ〉s − Φ (44)

where 〈Φ〉s is the scalar part of Φ. For the special case of the single-grade multivectors the validity of
Eq. (43) is trivial. Note that

ΨΨ� = s20 − v20 + v2 − b2 + r2 + t2 − t20 + q20 + 2γ0r · t

+ 2

 γ1
γ2
γ3

 (t0r − b× t)− 2

 γ10
γ20
γ30

 (q0r + v × t)

− 2

 γ23
γ31
γ12

 (v0t− t0v − q0b)− 2

 γ023
γ031
γ012

 (v0r + v × b)

− 2γ123v · r + 2γ0123b · r (45)
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The method of finding the inverse by using Eq. (43) is guaranteed only if ΨΨ� is a real number (a scalar) so
that Ψ−1 = Ψ�/ΨΨ�. It can, however, also be used iteratively on ΨΨ� etc. To make clear the connection
with the physics we switch notation to that used for the field quantities in the section on the Maxwell
equations, L = s, F = b + r = E − B, see also Eqs. (23) and (24). Doing this for the complete even
subgroup leads to:

Ψ = s+ b+ r + q = L+ F + q (46)

Ψ−1 =
(L+ F † − q)(L− F † − q)(L− F + q)

(L2 + E2 + B2 + q20)2 − 4[(LE + q0B)2 + (E ×B)2]

=
(L− F + q)[L2 −E2 + B2 − q20 + 2γ0123(q0L−E ·B)]

(L2 −E2 + B2 − q20)2 + 4(q0L−E ·B)2
(47)

The invariant divisor in Eq. (47) brings out an important invariant in electromagnetism [11], which will be
returned to in the discussion.

If Ψ is a multivector, Ψ† corresponds to its Hermitian conjugate Ψ† = γ0Ψ̃γ0, where Ψ̃ is the reversed
ordering of all multivector components of Ψ. The † operation reverses the sign of all basis elements of the
algebra which square to −1, so that in the product ΨΨ† all “oscillating” terms are quenched.

ΨΨ† = s20 + v20 + v2 + b2 + r2 + t2 + t20 + q20

+ 2γ0(s0v0 + r · t + t0q0 − v · b)

+ 2

 γ10
γ20
γ30

 (s0b− q0r − v × t + v0v + t0t− b× r)

+ 2γ123(s0t0 − v · r − v0q0 − b · t) (48)

Note that ΨΨ† contains no more than just the six multivector components that square to +1, and this
appears to be a good starting point for further reduction to a scalar (real number). Using ΨΨ† and Eq. (39)
and Eq. (40) the general case of the inverse of Ψ now follows as

Ψ−1 =
Ψ†(2〈ΨΨ†〉s −ΨΨ†)

ΨΨ†(2〈ΨΨ†〉s −ΨΨ†)
=

Ψ†(ΨΨ†)�

ΨΨ†(ΨΨ†)�
=

Ψ†Φ�

ΦΦ�
(49)

where the denominator is always a true (Lorentz) scalar (a real number). This is the first important new
result of this paper. We have defined Φ ≡ ΨΨ† and used Eq. (44). It also follows that

(ΨΨ†)−1 = Φ−1 =
Φ�

ΦΦ�
(50)

Note that Ψ−1 and Φ−1 have the same null-hyperplanes. Note also that Φ† = (ΨΨ†)† = ΨΨ† = Φ and the
product ΦΦ� = Φ�Φ is an invariant scalar. This scalar can be expressed in terms of the components of Ψ:

ΦΦ� = (s20 + v20 + v2 + b2 + r2 + t2 + t20 + q20)2

− 4(s0v0 + r · t + t0q0 − v · b)2

− 4(s0b− q0r − v × t + v0v + t0t− b× r)2

− 4(s0t0 − v · r − v0q0 − b · t)2 (51)

Hence

ΦΦ� ≡ 〈ΨΨ†〉2s − 4N2
� = (〈ΨΨ†〉s + 2N�)(〈ΨΨ†〉s − 2N�) (52)

where the positive scalar N2
� is defined as

N2
� = (s0v0 + r · t)2 + (t0q0 − v · b)2 + (s0t0 − v · r)2 + (v0q0 + b · t)2

+ (s0b− q0r − v × t)2 + (v0v + t0t− b× r)2 (53)
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The second important new result of this paper is that, for the general case, all null-hyperplanes are given
by 〈ΨΨ†〉s = ±2N� and that ΦΦ� is the difference of two positive definite scalars which represents a general
invariant in this formulation.

The invariant quantity ΦΦ� is a Lorentz scalar and we can define it to be the fourth power of some
effective invariant (or rest) mass µ0 (one factor µ0 for every Ψ). That rest mass is not static, but arises
from the internal dynamics of Φ. Note that the effective rest mass of light speed objects is zero and is real
for sub-luminal objects (and imaginary for super-luminal objects). One defines:

µ4
0 ≡ ΦΦ� = 〈ΨΨ†〉2s − 4N2

� = µ4 − 4N2
� (54)

where 〈ΨΨ†〉s, since it is a scalar, may be interpreted to be the square of the total mass µ or, equivalently, the
total energy. This may be verified for the simple example Ψ = s+b where ΦΦ� = (s20−b2)2 = (E2−p2)2 = E4

0 ,
and where µ4 = 〈ΨΨ†〉2s = (s20 + b2)2. We may also write:

µ4
0 ≡ 〈ΨΨ†〉2s − 4N2

� = 2〈ΨΨ†〉sΨΨ† − (ΨΨ†)2 (55)

where in a simplified case 2ΨΨ† may be interpreted to be the square of some field φ:

µ4
0 = 2〈ΨΨ†〉sΨΨ† − (ΨΨ†)2 = µ2φ2 − λφ4 = V (φ), with λ =

1

4
(56)

This means that the rest mass of a particle follows from a scalar potential µ4
0 = V (φ) which depends on the

field φ and a mass µ. A potential of quartic form may take the form of a Mexican hat and hence to so-called
spontaneous symmetry breaking, such that ground-state level of the energy, and hence its associated mass,
are non-zero. Interestingly the field φ2/4 = ΨΨ† does not need to be scalar, for example if Ψ = Ψ†, then the
condition is already fulfilled. Hence this means that any general Ψ that only contains elements that square
to plus one is good, such as for the Dirac operator! We may want to compare V (φ) to the Higgs potential
and µ to the Higgs mass, but no extra Higgs field φ needs to be postulated.

6. Discussion

Any relativistic algebra spans a space which is laced by a network of overlapping hyperplanes where
division is not defined. There is no such analogy in real, complex or quaternionic algebras where division is
defined everywhere except for zero itself. It is remarkable that many of these combinations correspond to
cases of primary physical importance.

In the previous section it has been argued that the way in which the inverse vector scales as the lightcone
is approached is just the way space and time scale in special relativity, with division being undefined on the
lightcone itself. In the light of this there is an argument to be made for the reverse proposition: that any
algebra which does not scale relativistically should not be considered sufficiently general to be considered,
by itself, a good description of the underlying nature of space and time. Much of the current thinking in
quantum mechanics is in terms of complex algebra, but complex numbers themselves do not have this scaling
property and the state space of quantum mechanics, the Hilbert space, is non-relativistic.

It has been shown that the non-definition of division everywhere is no impediment to the development
of a powerful vector differential algebra. Indeed, the subtlety and beauty of the interactions between the
non-commuting basis elements and the 4-vector derivative leads to all the Maxwell equations in a single step
and with a single field (no dual field) in the example earlier. We now try to shed some light on how and why
the vector differential Eq. (12) should prove so potent in the description of that subset of reality described
by the Maxwell equations.

Consider an arbitrary space-time 4-vector x :

x = γ0x0 +

 γ1
γ2
γ3

x (57)
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with inverse
x−1 = x/x2 = x/(x20 − x2) (58)

This has no inverse if the divisor x20 − x2 = 0. Note again that the scalar divisor in Eq. (58) is just the
square of the invariant interval and corresponds exactly to the change in scale of length and time (rulers
and clocks) in special relativity.

As an illustration of the utility of this we investigate the limit of a divisor as we approach the null-
hyperplane formed by the lightcone. For the 4-vector x of Eq. (57) define (∆sτ )2 = (∆ct)2 − (∆x1)2 −
(∆x2)2 − (∆x3)2 where ∆sτ is the length scale of the 4-dimensional interval. We follow Feynman Vol. II,
Chap. 26, Ref. [23]. Defining d0 = γ0∂0, passing from ∆sτ to its limit ds = cdτ , defining dτ = d/dτ , and
eliminating position variables in favour of velocity variables dxi = vidx0 leads to:

c dτ = γ0 dx0
√

1− (∂0x1)2 − (∂0x2)2 − (∂0x3)2

= γ0 dx0
√

1− (v/c)2 = γ0cγ
−1 dt (59)

Hence we find the invariant scalar operator

dτ = γ0cγd0 (60)

This reveals within the Clifford-Dirac algebra the combined role of the unit time vector γ0 and the γ-factor
(γ = 1/

√
1− (v/c)2) to relate the proper time τ to the time t in some specific frame. The differential

operator for time d0 and the covariant derivative dτ differ by a grade γ0 (dτ is a scalar, d0 is a time-
like vector), and this clarifies the distinction between 3-dimensional space, with t a mere parameter, and
4-dimensional space-time.

The extraordinary utility of this derivative, and its scaling properties, is best illustrated with a simple
example. Consider the derivative with respect to time in some specific frame of the 4-vector x defined as

c d0x = c− γ10v1 − γ20v2 − γ30v3 (61)

This is not in vector form, but in a combination of scalar and bivector in which the 3-velocity part is a
bivector, and the effect of the metric has been to reverse its sign. The proper 4-velocity is given by

dτx = γ(γ0c+ γ1v1 + γ2v2 + γ3v3) (62)

which is a true 4-vector.
The beauty and simplicity of the invariant derivative in maintaining the form of the multivector acted

upon may lead to a view that it should be adopted as the preferred form for describing dynamics, but
nature acts otherwise. The disturbing feature of Eq. (61), that the vector derivative altered the multi-vector
plane of the result, was ubiquitous in the derivation of the Maxwell equations above. How and why does
this all work? The answer lies partly in the subtle way in which the vector derivative transforms, and
transforms again the multi-vectors amongst each other, and partly in the fact that in each step the derived
fields have many transformation properties in common with their precursors. In particular there are areas
where division is not defined for the scalar-bivector combination introduced in Eq. (61), which are related
to another important invariant, the invariant mass (the rest mass), as is now discussed.

Consider the field product ΨΨ† for Ψ = F

1

2
FF † =

1

2
(E2 + B2) +

 γ10
γ20
γ30

 (E ×B) (63)

The scalar part represents the energy density of the electromagnetic field and the bivector part the Poynting
vector, which represents electromagnetic momentum density. As has been discussed in the previous section,
this combination has a null-hyperplane which behaves similarly in many respects to that of the vector. To
see this consider the case of Eq. (35) for Ψ = s+ b which has divisor s20 − b2. The divisor here corresponds

11



to the invariant mass density, and appears undefined in the case of a zero mass density. Since (rest)
massless particles and fields are lightspeed this again corresponds to the lightcone. The scalar plus bivector
combination is not a 4-vector, but its divisor scales in the same way as that of a 4-vector under Lorentz
transformations. Taking a time derivative of this form yields a true 4-vector. It can also be transformed
into a true 4-vector by multiplying by a unit vector in the time direction, though this is a frame dependent
operation. This operation has the effect of mapping the vectors to the scalar plus bivector combination and
vice-versa.

Using the general formula, it is possible to find the following simple cases which include the rotor:

Ψ = γ0v0 + r + γ123t0 + q (64)

Ψ−1 =
(γ0v0 + r + γ123t0 − q)

(v20 + t20 + r2 − q20)
(65)

and the simple case

Ψ = s+ r (66)

Ψ−1 = (s− r)/(s20 + r2) (67)

This would have no inverse if s20 +r2 = 0, which would imply s20 = 0 and r2 = 0, so Ψ would be zero anyway.
This means that there is no null-hyperplane in this case, and hence division is defined for all combinations
of such elements except zero itself. This special combination, which forms a sub-group within the algebra, is
isomorphic to the quaternions which themselves form a division ring. Physically this means that processes
of this nature are unrestricted, unitary and have no limit. One may go round and round as much as one
wishes, without having to scale or to transform through the scalar.

Also note the following cases

Ψ = b+ q (68)

Ψ−1 = (b− q)/(b2 + q20) (69)

and

Ψ = γ0v0 +

 γ023
γ031
γ012

 t (70)

Ψ−1 = (γ0v0 −

 γ023
γ031
γ012

 t)/(v20 + t2) (71)

for which division is always defined.
As a further example of the physical utility of these null-hyperplanes within the Clifford-Dirac algebra,

it is instructive to consider the “null vectors” of Kramers [16]. For these we have F 2 = 0, c.f. Eq. (47):

FF = F 2 = E2 −B2 + 2γ0123E ·B (72)

This requires E2 = B2 and E ⊥ B, corresponding to the free electromagnetic wave and it corresponds to
the case where there is no inverse for

Ψ−1 = FF †F †/((E2 −B2)2 + 4(E ·B)2) (73)

Again, the null-vector of Eq. (72) appears as a divisor. In each of the cases above it would seem that the
physics is constrained by the existence of each of these null-hyperplanes, and conversely, that the investigation
of the corresponding invariant divisors may throw further light on the physics.
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Another null-hyperplane of potential physical importance is that with respect to the scalar, the tri-vector
and the pseudoscalar:

Ψ = s+ t+ q (74)

Ψ−1 = (s− t− q)/(s20 − t20 + t2 + q20) (75)

which is precisely analogous to the case of the vector, scalar and the pseudoscalar of Eq. (37). The tri-vector
quantities here represent a product of a momentum density, with a perpendicular vector. This is analogous
to an angular momentum density[13].

In the preceding, we have started with a Dirac algebra and have looked for inverses whose product
yielded a simple scalar. In a sense, this is the reverse process to that followed by Dirac. He started with
a square root scalar operator and was forced to introduce a Dirac algebra to linearise it. Introducing the
scalar operator H, the classical relativistic Hamiltonian and demanding it be linear in the components of
the momentum p1, p2 and p3 we obtain:

H/c =
√
m2c2 + p2 = γ0mc+ γ10p1 + γ20p2 + γ30p3 (76)

Together with the energy p0, this led to his relativistic quantum mechanical operator equation

(p0 + γ0mc+ γ10p1 + γ20p2 + γ30p3) |Ψ〉 = 0 (77)

Note that the resulting operator only contains basis elements that square to +1. Hence, by demanding
this equation to be roughly equivalent to the classical scalar equation, Dirac obtained his non-commutative
algebra. Originally, the notation αi = γi0 and αm = γ0 was used. Squaring the original relativistic equation
that contains the classical Hamiltonian appears to be equivalent to the multiplication of the linearized
equation Eq. (77) with the conjugate operator p0 − γ0mc− γ10p1 − γ20p2 − γ30p3.

In the context of the previous section this operator is recognized as the “diamond” conjugate of the
linear operator in Eq. (77). Those multivectors with elements squaring to plus one, let’s call those Φ, which
have the property Φ† = Φ, appear to play a central role within the algebra: The same pair of conjugate
multivectors Φ and Φ� are essential both in forming the Dirac linear operator as well as in properly defining
division and finding inverses within the space-time algebra.

In the context of the Dirac equation, the Dirac algebra is successful in describing, amongst many other
things, half integral spin and the existence of the positron. It has been developed to be consistent with
special relativity: invariant for scalars (s), covariant for vectors and tri-vectors (v, t), and with the proper
transformations of the fields (r, b), and, of course, it is all of these things. Any relativistic algebra must
necessarily contain a proper description, at the very least, of connections on the light cone with invariant
interval zero. Comparing Eq. (77) with Eq. (39) and Eq. (40), one observes that all the terms squaring to
positive unity are represented, except one, that corresponding to the directed volume element γ123. The
Dirac equation properly describes the half-integral spin, but says nothing about the charge, though Dirac
tried to remedy this in later work[20]. The present authors have also made progress in trying to make this
link[21, 14]. The relationship of γ123 to the angular momentum density is the same as that of the charge to
the current density. In his paper on ”A new classical theory of electrons”, Dirac concluded[20]. “To make
this passage one will presumably have to replace the square root in the Hamiltonian (18) with something
involving spin variables ... This may be a difficult problem, but one can hope that its solution will lead to
the quantization of electric charge and will fix e in terms of h.” The term γ123 is a prime candidate for this
transition.

7. Conclusions

A link has been suggested between the mathematical process of division and the physical processes of
dynamics and transformation.

We have confirmed the work of other authors in that C`1,3, used as a vector differential algebra, is a
natural basis for the formulation of electromagnetism and leads to all the Maxwell equations, with the
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correct signs and without the need for a dual field. Further, the algebra is apt for describing the relativistic
(Dirac) quantum mechanics of particles of half-integral spin.

By looking at the inverses of multivectors, where and how division is and is not defined within the
Clifford-Dirac algebra has been investigated. It has been shown that the inverses scale relativistically in
a way which parallels that which is observed in nature. Further, those sets of quantities that admit zero
divisors embody some of the important invariant quantities of relativity and electromagnetism. For example
we have found that division is not defined on the lightcone, and that the scalar divisor corresponds to the
invariant interval. Taking the differential limit of the 4-vector as this divisor approaches the lightcone leads
to the invariant proper derivative of special relativity. This derivative is, in turn, crucial to the dynamical
description of light in the Maxwell equation, and of matter in the Dirac equation.

Further, other combinations parallel those familiar invariants of energy and momentum and the important
invariants of the electromagnetic field. Another set parallels, with one exception, the set of quantities in
the Dirac equation on which the 4-vector derivative, described above, acts. That missing quantity in the
set, exposed by this analysis, may prove the essential root-Hamilitonian that Dirac sought to describe the
underlying nature of charge in the further development of his famous theory.

In addition to all of this there is another simple hyperplane where division becomes undefined, involving
the scalar (energy) and the angular momentum(spin) which has not yet been looked at at all. This is a
subject which clearly merits further work.

The fact that many of these invariants may take the value zero for non-zero components, means that
the algebra is laced with a network of null-hyperplanes where division is not defined. A new multivector
conjugate and an explicit general formula for the inverse has been presented. In this case the divisor has a
fourth-power character. The underlying elements are all dynamical, but each may be simplified by viewing
it as possessing an “energy”. Expressed in energetic terms, then, the total energy then has a “Mexican hat”
form. This is similar to the form postulated for the Higgs mechanism, though here no extra potential is
required as the terms prove to arise in the present treatment from existing elements of the even (Dirac) set
of quantities.

We conclude that the fact the Clifford-Dirac algebra is not a division algebra, does not disqualify it as
a candidate algebra of reality. On the contrary there is a case to be made for the reverse proposition: that
the manner and areas where division is undefined in the algebra are precisely those required to properly
parallel physical reality.
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