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Abstract

Much of human cognition is devoted to image analysis. From in-
fancy we learn to process the two dimensional images we receive on our
retinas, decoding what we believe to be a representation of a world of
objects located in a three dimensional space, viewed from a particular
perspective. The consistency of that decoding is very strong: ‘seeing
is believing’. However, it is not infallible, and visual clues can give
rise to mistaken perspectives. There is an analog of mistaken perspec-
tive in a ‘received view’ on the relation between quantum mechanics
and special relativity. We explore a counter-argument, that quantum
mechanics is in fact a relativistic effect, primarily through the use of
images.

1 Introduction
This is a summary of a talk given to Quicycle in June of 2020. The article
includes the slides of the talk along with some explanation of the story they
try to tell.

1



Since we all come from different backgrounds, we all have different ways
of visualizing and processing the laws of physics. However we have all gone
through similar learning experiences in the interpretation of images through
our visual systems. Today I want to use our shared experience of image
interpretation to draw an analogy between how we ‘see’ quantum mechanics,
and how this mirrors features of visual processing. I also want to argue
specifically by images, avoiding equations where possible.

In the first section we shall look at some images to get a feel for the idea
of perspective as it pertains to interpreting images.

1.1 Illustrating Perspective

At any given moment we all view the world from a particular perspective. In
this slide we have some bicycles in imminent danger of falling... or perhaps
not. If we look carefully at the images we may find that our initial assumption
of perspective was not quite correct.

Perspective determines our impression of the relationships between ob-
jects. This interpretive feature of our built-in image processing is learned
and seems fairly automatic, but can adjust to changing input. In this talk
I shall argue for a number of perspective changes, figuratively speaking, in
particular cases where a conventional perspective is in question.

In the following slide we see an image where we automatically assume
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that our perspective is that of a person standing beside the railway tracks.
We also automatically assume that this is an image representing a three
dimensional space. For example we do not think of the horse as being bigger
than the train, even though that is how it appears in the image.

Alex Colville
‘Horse and Train’

Perspective determines how we interpret what we can see.

It is interesting to note that our usual assumptions about visual perspec-
tive persist, even when what we can see is not quite right! The following
slide shows Escher’s playful image that relies on our tendency to interpret
images in terms of three dimensional space.
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M. C. Escher
‘Ascending and Descending’

In the following we look at a bistable image called Schroeder’s Stairs.
Note that on viewing this image, there is a tendency to try to interpret it as
a representation of a three dimensional object.

Bistable Image

If you see this as a set of stairs as viewed from above,‘Push’ area A into the
background behind B. Alternatively regard the top step as part of a basement
ceiling. If you initially see this as a set of stairs viewed from below, ‘pull’ A
into the foreground.
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Once you have identified an object that looks like a set of stairs, that im-
pression becomes quite strong and it is hard to go back to an ‘uninterpreted’
view.

Let us note some features of the above bistable image.

Schroeder’s Stairs
If you can see the perspective shifts in the above image, here is what is
apparently happening.

• The image itself is two dimensional.

• It lacks the detail necessary to infer a
unique projective transformation from
3D to 2D.

• Our visual processing pushes our inter-
pretation onto the most familiar ‘above-
stairs’ perspective.

• The ’below-stairs’ perspective is however ’nearby’ given the restricted
information so we can ’see’ that interpretation too if we try.

In this talk we shall use the bi-stability of Schroeder’s stairs as an analogy
of a similar confusion of perspective in the interpretation of the relationship
between special relativity and quantum mechanics.

2 Two Views on Quantum Mechanics and Spe-
cial Relativity

Like many aspects of vision, the idea of ‘visual perspective’ is often general-
ized to refer to non-visual contexts. In this section we suggest that there is an
analog of the ‘above-stairs’ and ‘below-stairs’ perspectives above, in the rela-
tionship of quantum mechanics and relativity. The ‘above-stairs’ perspective
in this case is the default point of view that is a relic of both history and
current pedagogy. It is the author’s impression that this point of view ex-
tends into the foundations-of-quantum-mechanics community and is widely
accepted, implicitly if not explicitly. The purpose of this talk is to suggest
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that an alternative ‘below-stairs’ perspective exists, and is in fact much less
arbitrary than the received view. Below is a comparison of the two views.

Competing Perspectives in the Foundations of Quantum Mechan-
ics

Newton Schroedinger Dirac Probability

 Special
Relativity

Dirac Schroedinger Newton

The Historical/Pedagogical - "Above-Stairs" Perspective

The Fundamental- "Below-Stairs" Perspective

Algorithm Algorithm

Algorithm Algorithm

'Theory' 'Theory'

In the above slide there are two perspectives on how we see the relation
between relativity and quantum mechanics. The ‘above stairs’ perspective
is the most common and follows history and current pedagogy. In terms
of pedagogy, we first learn Newtonian mechanics. With usually just a nod
to interpretation, we learn about Schrödinger’s equation and non-relativistic
quantum mechanics. After discovering Relativity we ‘extend’ quantum me-
chanics to the relativistic regime via the Dirac equation. As is usual in
quantum mechanics we exit from the quantum world into the classical prob-
ability model via some form of the Born postulate. While this progression in
the undergraduate curriculum is not universal, the focus on non-relativistic
quantum mechanics as the implicit ‘origin’ of quantum mechanics is the norm.
We call this the ‘Above-Stairs’ perspective because it is the most popular.

This talk argues that the ‘below-stairs’ perspective, the lower frame above,
is closer to a fundamental view. That is, we do not really doubt that relativis-
tic mechanics is more fundamental than Newtonian mechanics. We would
like to see going directly from relativistic mechanics to the Dirac equation.
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From the Dirac equation we would then find the Schrödinger equation as a
small speed approximation and at either level exit via probability theory and
a correspondence principle to Newtonian mechanics.

Why is Distinguishing the two Perspectives Important?

1. Like the Schroeder Stairs image, both
the Dirac and Schrödinger equation lack
the information we need to interpret the
algorithm.

2. In particular : (Propagation as wave.)
→ (observation as a particle) is unex-
plained in quantum mechanics.

3. We shall see that the reason for this, and
the actual origin of the feature becomes
visible only when we make a direct link
to Special Relativity.

Newton Schroedinger Dirac Probability

 Special
Relativity

Dirac Schroedinger Newton

The Historical/Pedagogical - "Above-Stairs" Perspective

The Fundamental- "Below-Stairs" Perspective

Algorithm Algorithm

Algorithm Algorithm

'Theory' 'Theory'

The above slide addresses the question ‘Why should we worry about which
perspective we use?’ The answer to the question is that the weak point of
quantum mechanics is that it is an algorithm that has to be interpreted,
rather than a theory that arises from a simple picture.

The problem is that in the above-stairs perspective, quantum mechanics
is regarded as a phenomenon that is mostly independent of special relativity.
The Dirac equation is though of as a ‘relativistic correction’ to this sepa-
rate phenomenon of quantum mechanics. We shall argue that this is very
misleading and that in fact, quantum mechanics is a relativistic effect. In
this view the phase of Schrödinger’s wavefunctions is a residue of relativistic
time dilation that survives the small speed limit along with the kinetic en-
ergy. Without time dilation in the real world, there would be no quantum
mechanics.
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3 The Algorithm-Theory Collision
In the above slides, quantum mechanics has been labeled an algorithm,
whereas relativity and probability have been categorized as theories. This
may seem unfair, particularly as quantum mechanics currently yields predic-
tions that exceed in accuracy any other theories with the possible exception
of Relativity itself. However the categorization as an algorithm simply refers
to the fact that the theory has precise descriptions and accurate results, but
is not ‘explanatory’ or self-evident in any way. In the end there is a vast
array of interpretations of quantum mechanics, but none that all can agree
on. In short, it is not easy to determine where quantum mechanics comes
from.

One of the reasons for this is the confusion over the relationship be-
tween quantum mechanics and special relativity. Ultimately, if you are not
acquainted with the ‘below-stairs’ perspective, you cannot see that ‘wave-
functions’ are manifestations of the Lorentz transformation. You also cannot
see that ‘wave-particle duality’ is a manifestation of the equivalence of iner-
tial frames. By exploring the ‘under-stairs’ perspective we shall see that the
origin of quantum mechanics is more easily seen in this approach.

Before proceeding, let us question the theory/algorithm categorization
by pointing out limitations in what have been assumed to be ‘legitimate’
theories.

In the next slide we question the status of both Probability theory and
Special Relativity. The idea is to use the questions to ultimately show how
the below-stairs perspective resolves problems encountered in both theories.
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Questioning ‘Theory’ Status

 Special
Relativity

Dirac Schroedinger

The Fundamental- "Below-Stairs" Perspective

Algorithm Algorithm

'Theory' 'Theory'

Newton

Probability

1. If probability theory is so great, why does it appear to fail in the Young
double slit experiment?

2. If special relativity is such a great theory, why does it overlook quantum
mechanics?

3.1 Probabilistic Additivity in Question

In pursuit of the probability question, in the next slide we display the axioms
of probability noting the role of additivity.

The Probability Axioms

1. (Positivity) The probability of an event E is a non-negative real num-
ber:

P (E) ∈ R, P (E) ≥ 0 ∀E ∈ Ω where Ω is an event space.

2. (Unit measure) The probability that some elementary event in the en-
tire sample space will occur is 1.

P (Ω) = 1.

3. (Additivity) If E1, E2, . . . form a collection of mutually exclusive (dis-
joint) events then:

E1 ∪ E2 ∪ . . . satisfies P (
⋃

iEi) =
∑

i P (Ei).

As a consequence of these three laws we have:
P (A ∪B) = P (A) + P (B)− P (A ∩B).
Giving back P (A ∪B) = P (A) + P (B) if A and B are disjoint.
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3.2 The Apparent Failure of Additivity in the Double
Slit Experiment

In the following frame we point out how the probability model appears to
fail in the Young Double Slit experiment for electrons.

The Young Double Slit Experiment

Figure: The ‘failure’ of P [A ∪B] = P [A] + P [B] in the Young Experiment.

• If A represents the event “passage of a particle through the upper
slit” and B represents “passage through the lower slit” then classically
A ∩B = φ and we should have P [A ∪B] = P [A] + P [B]?

• In the actual double slit experiment with interference fringes, unless
probability theory itself fails, passage through slits A and B cannot be
disjoint events. A ∩B 6= φ

• This makes no sense in Newtonian space-time if electrons are particles.

The Double Slit experiment is not usually viewed as a failure of the proba-
bility model, and the resolution involving quantum mechanics involves wave-
particle duality. However, before addressing this let us note the claimed
limitation of special relativity.
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3.3 Questioning Einstein’s Postulates

Einstein’s Postulates (rearranged) and Clocks
Here are the postulates, rearranged for convenience.

1. Associated with any particle is a worldline. (The One.)

2. All inertial frames are equivalent. (The Many.)

3. The speed of light is constant in all frames.

The first two postulates are consistent with Newtonian Mechanics. It is
the last one in combination with the first two that forces a replacement of
space-time by spacetime.
For particles with only a single bit of information to distinguish the position
on a worldline from the background, 1) and 2) do not explicitly conflict. We
tend to believe both.
To the extent that Special Relativity is consistent, the
ontology underlying 1) and 2) need not concern us.
However, SR misses quantum mechanics · · · as such the postulates them-
selves must be inconsistent or incomplete in some way.

Here it is noted that it is the third postulate that really distinguishes
Newtonian space-time from Minkowski spacetime. The term spacetime, as a
merger of two words, is used to distinguish space-time where space and time
are treated independently, and Minkowski space where space and time are
rendered dependent because of the fixing of the speed of light at a finite
value.

Having noted the peculiar role of Probability theory in the double slit ex-
periment and the suggestion that Special Relativity is incomplete because of
the absence of any sign of quantum mechanics, we turn to a visual approach
to relativity, through spacetime diagrams. Here we note that the real power
of Einstein’s postulates comes from the second postulate. While the postu-
late initially seems very reasonable and benign; when it is coupled with the
constancy of c it constrains the set of all possible boosts of a free particle’s
worldline. This coupled with a worldline that carries no signal results in the
usual development of special relativity. However if you couple this with a
worldline that carries a signal, the result is a form of ‘quantum propagation’,
but in a context where we see its origin and function. In the following slides
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we shall see this by examining spacetime diagrams.

3.4 Spacetime Diagrams

In the following slide we see a simple spacetime diagram with the worldline
of a stationary particle that sits at the origin from t = 0 to t = 10. In all our
diagrams we choose a scale where c = 1 and here the future light cone from
the origin is sketched in green.

One-Bit Clocks (The One)

-10 -5 0 5 10

2

4

6

8

10

12

14

Figure: A One-Bit Clock at Rest. One bit here determines presence or
absence.

Implementing Einstein’s postulates gives rise to the Lorentz transforma-
tion that dictates how worldlines will look when viewed in different frames.
In the following slide we see images of the same worldline as in the previous
slide, except the worldlines have different relative velocities.
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One-Bit Clocks (The Many)
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Figure: A One-Bit Clock From Several Frames. Note the ’stretching’ of
time dilation. Note also the explicit 1-D homogeneous subspaces.

Having sketched a few images of a boosted clock, it is worth noting that
Einstein’s postulates mean that all such images are equivalent. All those
boosts fill in the future light cone from the origin as illustrated in the next
slide.

One-Bit Clocks (The Ensemble)
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Figure: A One-Bit Clock From All Inertial Frames. The ensemble of frames
covers a region of spacetime assembled from 1-D subspaces.
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3.5 Two-Bit Clocks

In this section we will explore the idea that a free-particle worldline contains
a signal with two bits of information. While we could encode the two bits of
information on spacetime diagrams in four colours, we only need two to see
the effect. So our images will only use two colours.

The next slide summarises where we are and where we are going.

Forcing Relativity One Bit Further

• The three postulates above, encoded mathematically, give us Lorentz
transformations and Spacetime.

• Quantum mechanics is overlooked by special relativity, but is visible
with one more bit of information.

• This may be demonstrated by looking at some familiar images from a
slightly different perspective.

• We shall walk through a sequence of images that shows the extra in-
formation uncovered by an extra bit.

• The reconciliation of the extra information with Einstein’s postulates
leads to a context and ontology for ’wavefunctions’ within special rel-
ativity.

The next slide shows why in Minkowski space, worldlines might carry
extra information. It stems from the fact that between any two distinct
points on a worldline lies a causal area. Events on worldlines then partition
spacetime into four distinct areas, past, future, and left and right. While we
need four colours to distinguish four states, we shall use only two. Visually
this is enough to ‘see’ the argument.
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Two-Bit Clocks.
If events on worldlines are countable and locally distinguishable, we need at
least two-bit discrimination to distinguish past, future, left and right.

Figure: Countable Events, Spacetime Areas and Multiple-Bit Clocks

Worldlines with discrete events lead to chains of causal areas. These
have a natural partition into 4 states, but for simplicity we use only two and
distinguish them by colour, projecting the colour onto the worldlines to make
a periodic pattern.

Two-Bit Clocks (The One)

Figure: A Two-Bit Clock at Rest. Note that the worldline is now a
‘worldsignal’ alternating red and blue.
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The significance of the alternating colouring becomes a little more appar-
ent when we look at boosts of the original worldline.

Two-Bit Clocks (The Many)
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Figure: Two-Bit Clock From Several Frames, a subset of ‘Equivalent frames’.
Time dilation apparent.

Note that the extra bit, the colouring, allows us to ‘see’ the effect of time
dilation locally! A distinct pattern emerges when you include all boosts.

Two-Bit Clocks (The Ensemble)

Figure: Two-Bit Clock From All Inertial Frames. The future cone contains
a hyperbolic pattern. Note each inertial frame (1-D subspace) has a single
frequency determined by velocity.
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In the following we consider what the pattern looks like when we fix t
and look along the x-axis.

Two-Bit Clocks (Ensemble at fixed t)

Figure: Two-Bit Clock Fixed t. The pattern of intersections with 1-D sub-
spaces.

In the above, look along the line t = 10 in the future cone. Each part of
the line inherits a colouring from the ensemble of images. The figure below
just removes some of the background colour illustrating the fact that the
horizontal line inherits its colour from the 1-D subspaces that cross it.

Two-Bit Clocks (Fixed t and 1-D Subspaces)

Figure: Two-Bit Clock Fixed t. Relation of fixed t to 1-D subspaces.
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Below we see the colouring of the spatial axis at fixed t as a result of the
Lorentz images of the rest-frame worldline. The resulting image we call a
‘History-Map’. It represents a mapping of a single worldline onto the space
axis at fixed t.

Two-Bit Clocks (Fixed t Only)

History Map

Figure: Two-Bit Clock Fixed t.

In the next section we have a closer look at the History Map. We shall
see it has a familiar appearance.

3.6 Two-Bit Clocks at Fixed t

Below is the history-map plotted so that the colour blue represents +1 and
the colour red represents −1. It is worthwhile noting here that there is noth-
ing in this illustration other than the display of time dilation from Lorentz
boosts. In the slide the blue and red regions of the previous slide are repre-
sented by ±1 respectively.
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Two-Bit Clocks (Particles in Discrete Time) Projection

Figure: Two-Bit Clock Fixed Time. Blue -> +1 Red -> -1 The ‘History-
Map’

Above is the History Map of a periodic rectangular signal on a worldline.
Below is the comparison for large t of the History map and the real part of
the Feynman Propagator.

The Binary Digital Clock vs. Feynman Propagator

Figure: The Binary Clock is the discontinuous curve. The continuous curve
is the real part of the non-relativistic Feynman Propagator.

• The sign of the Binary clock and the propagator are the same!

• The discrete phase of the Binary clock is two-bit special relativity
alone (No QM here!!).

• One number (m in terms of ~ and c registers the patterns).
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It has to be emphasized here that the History Map plotted in the above
figure is a direct result of special relativity alone. It is a manifestation of time
dilation, at low speeds, on a periodic signal of high frequency (the Compton
frequency). There is no quantum mechanics in this other than the numerical
value of mc2/~. This number is just a scale factor that registers the two
patterns. The pattern of the History Map itself is just special relativity.

The point here is that the ‘History Map’, a concept straight out of clas-
sical special relativity, clearly ‘knows about’ Feynman’s propagator. This
‘knowledge’ of the propagator structure arises from time dilation since if we
replace the Lorentz boosts by Galilean boosts, there is no time dilation and
the History Map is non-existent.

The next slide makes this point visually.

No Lorentz: No History-Map, No Propagator!

Figure: Newtonian Space-Time Does Not have a hyperbolic pattern to imi-
tate a Propagator. Space and time are independent. Schrödinger’s equation
is an overlay on the Galilean transformation!

That is, if the relationship between worldlines under boosts is really New-
tonian, then time is an invariant and when we look at images of our coloured
worldlines under boosts, we just get horizontal stripes instead of hyperbolae.
As a result there is no History-Map. There is then no relation to the
Feynman Propagator.

In the next section we discuss the role of the number of bits in the world
signal.
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3.7 Questions About the Extra Bit

In the previous section we showed images based on colouring worldlines in
two colours. This was simply to be able to show the effect of the pattern
in a simple fashion. We ended up with just the real part of the Feynman
propagator. We need another bit to extract the imaginary part. The origin
of the necessity of the 2-bit, 4-state description, for our purposes, is just
the need in a two dimensional spacetime to distinguish between past and
future, and left and right. In the following slide we discuss how going from
a worldline that is flat, to one that has discrete states, alters how special
relativity works.

These patterned worldlines that we are considering we shall call ‘clocks’.
The reason for this is that the patterns themselves are like ticks of a clock,
and have a similar function, discriminating time intervals.

Recognition of Two-Bit Relativity

• The spacetime patterns created by extra bits of information go un-
noticed in classical special relativity. The one (worldline) and the
many(ensemble of inertial frames) coexist peacefully.

• The extra bits of information bring in aspects of signal processing,
absent in conventional special relativity.

• The conflict between the one and the many can be illustrated by a
double slit experiment for two-bit clocks. To consider this we have to
allow two-bit clocks to change inertial frames.

• We shall consider this. We shall also have to consider the question as
to what happens if two piecewise-inertial frames exist between source
and observation point. In particular we shall have to choose: does
’the many’ postulate dominate, or not?
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3.8 Local Comparison of Inertial Frames

A Piecewise-Inertial Frame
1. The stationary clock exe-

cutes 5 1/2 cycles.

2. The hinged-frame clock exe-
cutes 4 cycles.

3. Age and parity where they
meet disagree.

4. The age disparity is an ex-
ample of the ‘Twin Paradox’.

5. The parity disagreement is
not considered in conven-
tional SR. Figure: A stationary clock and one in

a hinged frame.

In these two slides we illustrate clocks in inertial and ‘hinged’ frames.
Hinged Frame Equivalence

Figure: A stationary clock and
one in a hinged frame. Initial and
final parity agree. Both clocks are

periodic; they differ by one
complete cycle.

Figure: With a full cycle missing, the
hinged frame clock is

indistinguishable from the original
viewed from a hinged frame. It is an

image of the same clock!
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In the following slide we emphasize the fact that the hinged frame equiv-
alence has an ontology related to that of the equivalence of inertial frames.

Hinged Frame Equivalence

Figure: One clock
or two clocks?

Note that the pair of paths have two
possible ontologies.

1. There are two separate but syn-
chronized clocks. (Twin Para-
dox)

2. There is one clock but two im-
ages. (As in the equivalence of
inertial frames postulate)

If the latter is the case, the extent
to which the second postulate builds
spacetime, it now has to account for

the hyperbolic pattern.

In the next slide we discuss the extension of Inertial equivalence to hinged
frame equivalence.
Extend Inertial Equivalence

• The second relativity postulate demands the equivalence of all inertial
frames.

• A minimal extension of equivalency would be to demand preservation
of parity between hinged paths at source and sink. This preserves the
idea that the ensemble of inertial frames is an ensemble of images of
the rest frame.

• The extension preserves the equivalence of the local ‘history’ at both
source and sink, up to two bits of information.

• This is consistent with the picture that there is really only one rest-
frame signal, the others being images of the original signal over an
ensemble of (piecewise-) inertial frames.
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Here we discuss the idea of inequivalence.

Hinged Frame Inequivalence
1. Equivalence between paths

mean they differ by full period
deletions.

2. Inequivalence means they differ
by partial period deletions.

3. Physically, inequivalence means
the two paths are not Lorentz
transformation images of the
same clock.

4. By choosing binary parity (±1),
opposite parity at the end of
the path eliminates an inequiv-
alent pair from contributing to
the propagator.

5. This implements an exclusive
OR for paths.

Figure: This hinged pair is
inequivalent. They are not images of

the same clock under Lorentz
transformation from source and sink.

3.9 Inertial Equivalence and the Double Slit Experi-
ment

Here we question the two-bit clocks for their response to the double-slit
experiment.
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The Young Experiment Revisited

Figure: Add the indicator function for inertial equivalence, or its square?

• If pairs of paths through the double slit are hinged-inequivalent, the
contribution of the paths cancel.

• Adding clock signals filters out inequivalent paths and invalidates the
classical assumption that the worldlines going through A or B are dis-
joint events!

Below is a comparison of the two-bit clock with the Feynman Propagator.

The Two-Bit Digital Clock vs. the PI for the Double Slit

Figure: The real part of the Feynman propagator compared to a two-bit
clock from a double slit source. Both show mid-field interference effects.
The gaps in the bit-state graph correspond to cancellation of inequivalent

paths.
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The Two-Bit Clock and the Double Slit

• The brown region is the square of the real part of the wavefunction from two
point sources, using the Feynman propagator and showing the central three
fringes of the interference pattern.

• The blue area indicates the same calculation but for the two-bit relativistic
clock. The fringe here corresponds to the yes/no answer to the question:
Are the two paths two-bit inertial equivalents of each other?

• The Feynman calculation is just a smoothed version of the relativistic one.

• The difference is that we know what the relativistic calculation is actually
doing · · · filtering for Lorentz equivalent images!

In the above slide we discuss the similarity of the conventional double slit
result and the result of a two-bit clock from special relativity.

Adding Signals Not Probabilities?

• Classically we might expect to add probabilities at the detector screen.

• This is because we expect passage through either slit to be disjoint events so
P [A ∪B] = P [A] + P [B]− P [A ∩B] but A ∩B = φ (for classical particles)!

• Giving a particle an extra bit, making it a discrete clock forces us to reconcile
the one and the many in special relativity. The ‘natural’ extension requires
both paths to be images of a single rest-frame path, agreeing at both source
and sink.

• This means that here A ∩ B 6= φ is a consequence of Einstein’s second
postulate ("Spacetime tells particles how to move" . . . with one extra bit of
information.).

• Eventual contact with probability stems from the fact that the clock en-
ables three-way discrimination via a characteristic function χ(x, t) ∈ {0,±1}.
Thus the square of χ may be used as a probabilistic characteristic function
χ2(x, t) ∈ {0, 1}.
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Technical Depth
What does this perspective allow you to do?

1. Derive the free particle Dirac and Schrödinger equations in two dimen-
sions using only special relativity applied to two-bit clocks.

2. ‘Extension’ to 4-D. This is straightforward and the idea is consistent
with a ‘Two-Bit clock’, but in every time-like plane. The argument is
nearly as immediate as in 2D, once the relation to spacetime area is
seen. (It is however no longer equivalent to the original conception of
the path integral by Feynman.)

3. There are some inroads into including fields.

4. The multi-particle case is unexplored, but hopeful.

5. The fragment of Quantum Mechanics covered is small, but central.

Why has this not been noticed?

1. Schrödinger’s equation, like Schroeder’s stairs is ‘flat’. It does not
contain the required information (boosts from Clifford algebra) to link
wavefunction phase to relativistic time dilation.

2. The Dirac equation is almost universally produced at the level of partial
differential equations, with a continuum assumed. This obscures the
counting arguments suggesting that wavefunctions enforce a relativistic
equivalence principle.

3. The completeness of a large fragment of quantum mechanics in
Schrödinger’s equation seems to suggest we need not look to special
relativity to find ‘Quantum Wierdness’. This reinforces the misper-
ception that quantum mechanics and special relativity are completely
decoupled in the small v limit.
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3.10 Comparing with Bohm.

Comparison with Bohm

• A characterization of the Bohm picture is “particles AND waves” rather
than particles OR waves.

• An unusual feature is that the particle has to respond to a field that is
generated by its own presence in the current environment.

• The two-bit clock has a similar feature, but the field is a manifestation
of the relativity principle, the ‘Equivalence of Inertial Frames’.

• It is “spacetime tells particles how to move” extended to a world-signal.

• The two-bit clock suggests that the ‘quantum potential’ is a manifes-
tation of spacetime and the equivalence of inertial frames.

The deBroglie-Bohm picture allows the classical image of a particle with
a well defined velocity, however the price for this is the existence of a field
that responds to the particle position and its environment. This results in
the ‘quantum potential’ that encodes the information that would otherwise
be present in the wavefunction. A pertinent question has always been, ‘What
is the origin of the quantum potential?’.

Looking at the results of the the above pictorial version of two-bit clocks
it is apparent that spacetime itself acts a bit like a quantum potential, in that
the wavefunction essentially preprocesses the ensemble of paths, weeding out
those that are inequivalent. This functions like the quantum potential of the
Bohm theory.

In the next slide we conclude this talk, commenting on the advantage of
the ‘below-stairs’ perspective.
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Conclusions

1. The ‘below-stairs’ perspective has a distinct advantage over the above-stairs
perspective.

2. It starts in the classical world with special relativity intact as opposed to as
an after-thought.

3. ‘Quantization’ follows from special relativity by specifying a discrete periodic
process at the Compton scale.

4. Wavefunctions and the resulting superposition principle arise as a direct
consequence of Lorentz covariance.

5. The function of the wavefunction is known, it is a filter to preserve a discrete
form of Lorentz covariance.

6. The origin of (many paths) <-> (one particle) is clear ( ie. the equivalence
of inertial frames).

4 Advertisement

4.1 Clifford Algebra for Skeptics

In the allegory of Plato’s Cave, humans are likened to slaves in a cave who see
only shadows on a wall. That is, our understanding of the world is limited
by being unable to perceive the real world, instead only receiving projections
onto our senses. The process of learning can be likened to Plato’s slaves
being unchained, thus being enabled to see missing dimensions.

In my last talk I would like to make the point that Clifford algebra,
commutation relations, and their relations to quantum mechanics and special
relativity, follow from Nature’s preference to count to four rather than just
2. While this may sound odd, note that with persistence we can construct
the real numbers with binary arithmetic, as is commonly done in measure
theory, and as we implicitly illustrated when we discussed ‘Thermodynamic
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Clocks’ in a previous talk.
To get a glimpse of this, consider a matrix that counts to four, as in the

slide below. We can imagine combining states into sums and differences of
even and odd states. If we arrange the differences to be in the bottom two
states, the counting operator is modified by a similarity transformation. The
result is the block diagonal matrix in the slide. The block-diagonality sug-
gests that the period 4 counting can be partitioned into orthogonal subspaces,
one of which operates with the simple switch σx. However the other subspace
operates with the period-4 real matrix iσy. Both subspaces are like the shad-
ows of Plato’s cave. They are both lower dimensional projections of higher
dimensional objects. The latter shadow is a harbinger of a Clifford algebra,
large enough to provide a basis for the Dirac equation in a two dimensional
spacetime. Following this shadow enlightens some of the peculiarities of the
efficacy of Clifford algebra in relativity and quantum mechanics.

Images and Plato’s Cave
1. Plato’s Cave.

2. We see only shadows.

3. In Quantum Mechanics, we do not
see the whole picture.

4.


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 •


1

0

0

0

 =


0

1

0

0



5.


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0



“Clocks, Clifford Clocks and Statistical Mechanics” (Last talk)
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