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 APPLICATIONS OF GRASSMANN'S EXTENSIVE ALGEBRA.

 BY PROFESSOR CLIFFORD, University College, London.

 I PROPOSE to communicate in a brief form some applications of Grass-

 mann's theory which it seems unlikely that I shall find time to set forth

 at proper length, though I have waited long for it. Until recently I was

 unacquainted with the Ausdehnungslehre, and knew only so much of it

 as is contained in the author's geoimetrical papers in Crelle's Journal and

 in Iankel's Lectures on Complex Numbers. I may, perhaps, therefore be

 permitted to express miy profound admiration of that extraordinary work,

 and my conviction that its principles will exercise a vast influence upon the

 future of mathematical science.

 The present comnmnunication endeavors to determine the place of Qua-

 ternions and of what I have elsewhere* called Biquaternions in the more

 extended system, thereby explaining the laws of those algebras in terms of
 siml-pler laws. It contains, next, a generalization of them, applicable to any

 number of dimensions; and a demonstration that the algebra thus obtained

 is always a comnpound of quaternioni algebras whicll do not interfere with

 one another.

 On the Relation of Grassmann's liethod to Quaternions and Biquaternions; and on
 the Generalization of these Systems.

 Following a suggestion of Professor Sylvester, I call that kind of multipli-
 cation in wlhich the sign of the product is reversed by an interchange of two

 adjacent factors, polar multiplication; because the product ab has opposite

 properties at its two ends, so that ab =- ba. The ordinary or commutative
 multiplication I shall call scalar, being that which holds good of scalar num-

 bers. These words answer to Grassmann's outer and inner multiplication;

 which names, however, do not describe the mnultiplication itself, but rather
 those geometrical circumstances to which it applies.

 * Proceedings of the London Mathematical Society.
 350
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 CLIFFORD, Applications of Grassmnann's Extensive A lyebra. 351

 Consider now a system of n units i,, t2, .t.. q, such that the multiplication
 of any two of them is polar; that is, 7tr = - s t tr. For geomnetrical applica-
 tions we may take these to represent points lying in a flat space of n -1

 dimensions. A binary product t, t, is then a unit length measured on the line
 joining the points tr i t; a ternary product lr ts lt is a unit area measured on the
 plane through the three points, and so on. A linear combination of these

 units, aartr, = suppose, represents a point in the given flat space of n -1
 diinensions, according to the principles of the barycentric calculus, as extended

 in the Ausdehnungslehre of 1844.

 In space of three dimensions we may take the four points to, tl, t2, t3 SO
 that tla t2X t3 are at an infinite distance from tl in three directions at right
 angles to one another.

 Now there are two sides to the notion of a product. When we say

 2 X 3 = 6, we may regard the product 6 as a number derived from the
 numbers 2 and 3 by a process in which they play siinilar parts; or we may

 regard it as derived from the number 3 by the operation of doubling. In the
 former view 2 and 3 are both numbers; in the latter view 3 is a number,

 but 2 is an operation, and the two factors play very distinct parts. Th7e
 Ausdehnungslehre is .fbunded on the first view; the theory of qiuaternions on the
 second. When a line is regarded as the product of two points, or a parallelo-

 gram as the product of its sides, the two factors are things of the same kind

 and play similar parts. But in such a quaternion equation as qp = a, where p
 and a are vectors, the quaternion q is an operation of turnling and stretch-
 ing which converts p into o'; it is a thing totally different in kind from the
 vector p. The only way in which the factors q and p can be taken to be of
 the same kind, is to regard p as itself a special case of a quaternion, viz: a
 rectangular versor. But in that case the expression does not receive its full

 meaning until we suppose a subject on which the operations p and q can be
 performed in succession.

 The quaternion symbols i, j, k represent, then, rectangular versors; that is

 to say, they are operations which will turn a figure through a right angle in
 the three coordinate planes respectively. It follows that if either of them is
 applied twice over to the same figure, it will turn it through two right angles,

 or reverse it; we must therefore have i j2 j k 2 1 .
 To compare these with the symbols for the four points t0, tl, t2, t3, let us

 suppose that i turns the line tl t2 into t0 t3; that j turns to t3 into to t1; and that k
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 352 CLIFFORD, Applicatons of Grassmnann's Extensive Algebra.

 turns 'O t1 into tl t,. The turning of lo 12 into t t3 is equivalent to a translation
 along the line at infinity t123. WVe may, therefore, write i= L2l3, and so

 j=-- t3i1, k =. t2. Now i turns t t2 into tO t3; that'is
 O* to 2 = to L3

 or to 13 = t2 t3 * t t2
 2'

 - . tO 13-

 We are therefore obliged to write 2= -1, and in a similar way we may

 find t, . t2 1.
 'This at once enables us to find the rules of multiplication of the i, j, k.

 Namelv, we have
 jk- t3 t1 * tl 12 -12 t3 =t

 ki tl 12 . t 2 t3 t3 tl - j

 ij0_ t2 13 * L3 Ll - L12 - t
 and finally

 i - 12 t3 1 C3 ti l 2 -t 1

 In order, therefore, to bring tlhe quaternion algebra within that of the
 Ausdehnungrslehre, we have to make the square of each of our units equal.
 to -1, as pointed out by Grassmann.* But I venture to differ from his

 authority in thinking that the quaternion symbols do not in the first place
 answer to the "Elenmentargrosse" of the Ausdehnungslehre, buit to binary

 products of them; from which supposition, as we have seen, the laws of their

 multiplication follow at once.

 It is quite true that in process of time the conception of a product as

 derived from factors of the same kind, and so of the product of two vectors

 as a thing which might be thought of without regarding them as rectangular

 versors, grew upon Hamilton's mind, and led to the gradual replacement of

 the units i, j, k by the more general selective symbols S and V. To explain

 the laws of multiplication of i, j, k on this view, we must have recourse to the

 theory of "ErgTnzung," or, which comes to the same thiing, represent an

 area tj by a vector k perpendicular to it. But the explanation in this case is
 by no means so easy; and it is instructive to observe that the distinction

 between a quantity and its " Ergiinzung," i. e. between an area and its repre.

 sentative vector, which, for some purposes it is so conivenient to ignore, has to
 be reintroduced in physics. Thus Maxwell specially distinguishes the two

 kinds of vectors which he calls force and flow, and which in fact are respec-
 tively linear functions of the units and of their binary products.

 *Math. Annalen.
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 CLIFFORD, Applications of Grassmnann's Extensive Algebra. 353

 We have regarded the symbols i, j, k as rectangular versors operating on
 the quantities to t1 , t0 12 1 to3. 3 These quantities are unit lengths mleasured any-
 where on the axes in the positive directions. They have magnitude, direction,
 and position, and are thus what I have called rotors (short for rotators) to dis-

 tinguish them from vectors, which have inagnitude and direction but no posi-
 tion. A vector is of the nature of the translation-velocity of a rigid body, or
 of a couple; it may be represented by a straight line of given length and

 direction drawn anywhere. A rotor is of the nature of the rotation-velecitky of
 a rigid body, or of a force; it belongs to a definite axis. A vector may be
 represented as the dlifference of two points of equal weight (the vector ab may
 be written b - a); this is shewn by the principles of the barycentric calculus to

 represent a point of no -weight at 'infinity. Accordingly the symbols t, 1 t, 3 mnay
 be taken to mean unit vectors ~along the axes. In fact, if we write to + t1 = a,v
 the points a will be situiated on the axes at unit distance from the origin, and

 thus 17 -_ a - t1- will represent the unit vector from-i the origin to a,.
 The versors i, j, k will operate on these vectors in the same wav as on the

 'otors 10 1 , 1012, 0 3 . VWe find that il2 1 t21 3*.12 = t3 =l t, 12. These
 rules of multiplication coincide with those for i, j, k if we write the latter in
 place of tl, 12, t3. Thus we may use the same symbols to represent unit vectors
 along the axes and rectangular versors about them. But it is not in any

 sense true that the vectors , , 13 are identical with the areas 12 t3 13 tl l 1 t2;
 it is only sometimes convenient to forget the difference between , and l2 3.

 In the elliptic or hyperbolic geometrv* of three dimensions, the four

 points O, l, l2, 13 must be taken as the vertices of a tetrahedron self-conjugate ini
 regard to the absolute, so that the distance between every two of them is a

 quadrant. The product of four points a/3ro will then cornsist of three kinds
 of terms; (1) terms of the fourth order, beinog 1O , 2 13 multiplied by the deter-
 minant of the coordinates of the four points, which is proportional to sin (a, i3)

 sin ( co s) COS (al3, )A) ; (2) terms of the second order, resulting fromn pro-
 ducts of the form tl tc 12 tl t2; (3) terms of order zero, resulting from
 products of the form t, L t2 Altogether we may arrange a/3r3 in eight terms
 as follows:

 ag3)yZ a + b7 bs tr ls + C to Cl 12 13. [r, s different.]
 And it is now easy to see that the product of any even numnber of linear fac-
 tors will be of the samie formn. This form is what I have called a biquaternion,

 * Dr Klein's names for the geomnetry of a space of uniform positive or negative curvature. See Proc.
 Lond. Math. Soc.

 89
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 354 CLIFFORD, Applications of Grassmnann's Extensive Algebra.

 and may be easily exhibited as such. Namely, let us write (0) for tO tl t2 13; then
 ve hlave

 't _ l2t3 = 3 - t13l2

 6,i = -(d == to, tl i) j6J - t1 10, (OAk k - 13 to
 = 1.

 Therefore, the product of any even number of factors greater than two is a

 linlear function of 1, i, j, k, u, 6i, coj, o,)k; that is to say, it is of the forin q + -or,
 where q, r are quaternions. While the multiplication of o with i, j, k is scalar,

 its multiplication with to, l I, 13 is polar. The effect of multiplying by x is to
 change any system into its polar system in regard. to the absolute.

 The chief classification of geometric algebras is into those of odd and even

 dimensions. The geometry of an elliptic space of n dimensions is the saine

 as the geometry of the points at an infinite distance in a flat or parabolic

 space of n + 1 dimensions; the theory of points and rotors in the former is
 the same as that of vectors and their products in the latter. Each requires a

 geometric algebra of n + 1 units. Thus the algebra of four units, leading as

 above to biquaternions, is either that of points and rotors in an elliptic space

 of three dimensions, or of vectors and their -products in a flat space of four

 dirnensions. All geometric algebras having an even number of units are

 closely analogous, to it; of these I would point out particularly that of two

 units, belonging to the elliptic geometry of one dimension or to the theory of

 vectors in a plane. Let the units be t2, t3; then a product of any even

 number of linear functions must be of the form a + b6213. Let i = t2 t3,
 then i2 -1; and such an even product is the ordinary complex number
 a + bi. In the mnethod of Gauss every vector in the plane is represented by
 neans of its ratio to the unit vector 12, that is to say, t2 and t3 are replaced
 by I and i. This g ives an artificial but highly useful value for the product of

 two vectors. We might apply a similar interpretation to the algebra of four

 units, denoting the points t, I t2l t13 by the symbols co, i, j, k, and consequently
 their polar planes (ot , (01) tot2 , (013 by the symbols 1, oi, (oj, uk; but I am not
 aware that any useful results would follow from this imitation of Gauss's
 plane of numbers.

 Rules of Multiplication in an Alyebra of n utnits.

 In general, if we consider an algebra of n units, ti, (2, . . . t, such that
 12 -1 X = a product of m linear factors will contain terms which

 are all of even order if m is even, and all of odd order if m is odd; -for the
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 CLIFFORD, Applications of Grassmnann's Extensive Algebra. 355

 substitution of -1 for any square factor of a term reduces the order of the

 term by 2.

 A product of m units, all different, multiplied by any scalar is called a
 term of the order m. Tho sum of several termns of order m, each multiplied

 by a scalar, is a iorm of order m. The suni of several forms of different
 orders is a quantity and an even quantity when the forms are all of evei
 order, an odd quantity when they are all of odd order. Thus the multipli-
 cation of linear functions of the units leads only to even quantities and odd

 quantities.

 The square of a term of the rn/h order is + 1 or -1 according as thle integer

 part of 2 (m + 1) is even or odd. For the product tl 12 . . . ltL2 * . . iS 15

 transformed into t2 t2... 2t by ?m (m -(1) changes of consecutive factors, and

 therefore equals + 1 according as 2 (nz + 1) is even or odd; which is

 equivalent to the rule stated.

 The multiplication qtf a term P of order m by a ternm Q of order n, having k
 factors common, is scalar or polar according as nn - k2 is even or odd. Let
 P = CPR and Q = CQ', where C, P, Q' have no cominon factor; then the

 steps from CP'CQ' to CP'Q'C, CQ'P'C, CQ'CP' require respectively k (n_k),
 (m k) (n - k), Ik (m - k) changes of consecutive factors; and the sum of
 these quantities is even or odd as mn - k2 is.

 The follow-ing cases are worth noticing:

 (1) When two terms have no factor common, their multiplication is
 scalar except when thev are both of odd order. (Case k 0 O).

 (2) The multiplication of two even terms is scalar or polar according as

 the number of comimon factors is even or odld.

 (3) If one of two terms is a factor in the other, the multiplication is
 scalar except when the first is odd anid the second even.

 Theory of Algebras with an odd number of units.

 When the number of units is n -2nz + 1, there are n terms of the order
 n _1 , and all terms of even order can be expressed by means of these. For
 the product of any two of these terms is of the second order, since they must

 have n 2 factors common. We obtain in this way all the terms of the
 second order; and from them we can build up the terms of the fourth, sixth
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 356 CLIFFOIRD, Applications of Grassmann's Extensive Algebra.

 orders, etc. Let the product of all the units ij t2.. . t, be callecl , then these

 terms of the order n--1 shall be defined by the equations kr =( (t)r It will
 follow that k, k2. .k. I according as mi is even or odd, or, which is tlhe
 same thing, accordincg as the squares of the k are + 1 or- 1. By means of

 this formula, terms of order higher than Ti in the k, may be replaced by

 terms of order not higher than m. The multiplication of the k is always

 polar.

 The terms of even order, regarded as compound units, constitute an

 algoebra which is linear in the sense of Professor Peirce, viz: it is such that the

 product of any two of these terins is again a term of the system. The num-

 ber of them is 2n-1= 22m; for the v whole number of terms, odd and even,

 is 1 + n + -.n-1 +... + 1 n + 1 ) 2 + a)n d 2 and the- number of
 2

 even terms is clearly equal to the numnber of odd terms.

 I shall call the algebra whiose units are the even terms formed with n ele-

 nmentary units t1t2 ... t.. the n-way geometric algebra. Thus quaternions are
 the three-way algebra. We may regard the units of quaternions as expressed

 in either of two ways. First, in terms of the elementary units 11 t2 t; they
 are then (1 , 1213, 131k ,u112) .Secondly, we may vrite kl, 2 for the terms It,,, 311,
 and the system may then be written (1, k1, Ic2, k1 k2). In this second formn it

 is ideentical with the entire algebra of two elernentary units, including both

 odd and even terms.

 The five-way algebra depends uipon the five terms k1, Ic2 Ic3, kI, k,5 and their
 products; the number of termns is sixteen. Now we may obtain thle whole of

 these sixteen termis by multiplying the qu,aternion set

 (1, ki1, Ik2, ki k2)
 by this othier quaternion set

 (L, k4 k5 , k5 k3, ck3 k4).

 For each of the sixteen products so obtained is a term of the even five-way

 algebra, and the products are all distinct. Moreover, the two quaternion sets

 are commutative with one another. For since the k multiply in the polar mani-

 ner, we may regard them as elementary units for this purpose; now the terms

 in the second set are all even, and no terin inl one set has a factor comrmon
 with any term in the other set.

 In the language of Professor Peirce, then, the five-wayl algebra is a com-
 pound of two quaternion algebras, which do not in any way irnterfere, because

 the units of one are commutative in regard to those of the other. A quantity
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 CLIFFORD, Applications of Grassmann's Extensive Algebra. 357

 in the five-way algebra is in fact a quaternion X + ix + jy + kz, whose coeffi-
 cients X x y z are thenmselves quaternions of another set of units (1, i1, j1, k1),
 the i1, j1, k1, being commutative with i, j, k.

 I shall now extend this proposition, and shew that the (2m + 1)-way alge-
 bra is a comnpouind of m quaternion algebras, tlhe units of which are commutative
 with one another. To this end let us write pO - k1 I2, and then

 p 1= k, k2k6k7=po k6k7 g1 = k3k4 k5
 -p2 pi k1o k11 k2=gk8 8kg
 .* . . . . . . 0 . . . . .

 Pr - Pr-1 k4r+2 k4r+3 qr = gr-1 k4r k4r +I

 Consider now the quaternioii sets

 1, ki, Ik2 I kIk2
 1, k4k5, k5 k3, Ik3k4

 1, po k6 , po k7, -k6k7
 1, q1k I8, q1 kg, k8kg

 1 , klo X1, pk il , klo kil

 1 X gr-J4, I_r- 1k4r k4rk4r + I

 1_Xpr-1 k4r+u27 Pr-1 4r +3 X k4r + 2 k4r + 3
 . . . . . . . . . . . . . .. . . . . . . . . . . .

 viz: a p-set and a q-set alternately. I say that if we consider the first m sets
 of this series, we shall find them to involve 2m + 1 of the k; that the pro-

 ducts of mn terms, one from each series, constitute 22m distinct terms, which are
 therefore identical with the terms of the (2m + 1) -way algebra; and that the
 terms in any two sets are commutative with each other. The first two

 remarks are obvious on inspection; the last also is clear for the case of a p-set

 and a q-set, because the g-set is of even order in the k, and no factors are conm-
 mon to the two sets. It remains only to examine the case of two p-sets and of

 two q-sets. Consider the two p-sets
 1 X _Pr _1 k4r + 2,) _Pr- lk4r +3 X k4r + 2 k4r + 3X

 1,p81Ic48+2,p811k4s3, k4s+2ck4s+3,
 where s > r. All the terms of the first set are contained as factors in each of

 the terms p_P -k4s + 2, ps- k4s + , which are of odd order in the k; consequently,
 the multiplication is scalar. The term k4s +2 2k4 +3 has no factor cominon with
 the first set, and beinig of even order is commutative in regard to it. Hence
 the two sets are commuqtative with one another. Next take the two g-sets

 1,1 q8rlk4r I8, q-1 k4r1+ Xk4r k48r I+1

 1 90s-l k4s s-I k4s+ k4s k4s+
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 358 CLIFFORD, Applications of Grassmann's Extensie Algebra.

 Here again all the terms of the first set are factors of q', 1 k," and of q, _1 k4+1 ,
 and they have no factors in common with k4,, k4,, +1; since then all the terms
 are of even order in the k, the multiplicatioin is scalar. The proposition is
 therefore proved.

 We mnay set out a formal proof that the 22m products of m terms, one
 from each of the first nm sets, are all distinet, as follows: Suppose this true for
 the first m 1 sets: that is to gay, that lno two of the products formed from
 them are either identical or such that their product is ? k1 k2 k2m i.
 Let then a, b be two of these products; and let c, d be two terms of the next
 set. Then we have to prove that ae can neither be equal to =- bd, nor such
 that the product acbd is zE k k2 ... k2m,,- k2m k2m+i . Now if ae = ? bd,
 multiply both sides by be; then ab _- ed. The product ed is one of the
 terms of the new set; it is either unity, or contains one or both of the new
 units k2m, k2m +', so thiat it cannot be equal to ab. The product abed cannot

 be i k... k2m+, unless ed is k2ml2m+i and ab is k k2...k2m1,which is
 contrary to the supposition., Hence if the products of the first m -1 sets
 are all distinct for the purposes of the (2m-1)-way algebra, the products of
 the first m sets will be all distinct for the purposes of the (2mn + 1)-way alge-
 bra. But it is easy to see that the products of the first two sets are distinct.

 Algebras with an even number of units.

 Every algebra with 2m units is related to the adljacent algebra with 2m 1
 units in precisely the same way as biquaternions are related to quaternions;
 namely, it is simply that adjacent algebra multiplied by the double alge-
 bra (1, ca) where o is the product of all the 2mn units. For clearly all the
 even terms of the (2m -1)-way algebra are also even terms of the
 2?n-way algebra, and so also are their products by &a; but these are all
 distinct from one another, and consequently are all the even terms of the
 2m-way algebra.

 The multiplication of u with the k of the (2m-1) -way algebra is scalar,
 because the k are factors in the c, and they are both even terms.

 Hence the 2m-way algebra is a product of the (2m -1)-way algebra with
 the double algebra (1, &)) , the two sets of units being commnutative with one
 another.
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