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Abstract
Einstein’s gravitational field equations fromhis general theory of relativity have formed the
foundations of gravitational studies since their publication.His work is widely acknowledged as an
example of a theoretical study thatmade a great contribution to our understanding of gravity.
Einstein’smathematical approach hasmade the topic complex and open tomisinterpretation. This
study evaluates the physics uponwhich hismathematics operates. It shows thatmass distorts space–
time by the redshift of photons. It derives two alternativemetrics to the Schwarzschildmetric. One
was derived directly fromEinstein’s early work on gravity. The otherwas derived fromEinstein’sfield
equations by removing the approximations introduced in the Schwarzschildmetric derivation. Both
match observation better than the Schwarzschildmetric and showwhy Einstein did not believe in
black holes. Themetric derived directly fromEinstein’s early gravitational study, predicts the torus
shape shown in the EventHorizon Telescope collaboration image. In showing the physics involved,
this study suggests it is easier to understand the complexities of his work.

1. Introduction

In themodern era, Copernicus (1543) suggested that the Sunwas the centre ofmotion. Brahe (1572)made
detailed studies of themotion of the planets. His assistant, Kepler (1609, 1619), used Brahe’s observations in his
work that showed the planets were orbiting the Sun.He determined three laws of planetarymotion around the
Sun. Their contributions have been summarized [1].

With his construction and use of a telescope, GalileoGalilei [2, 3]was able to observe themotions of the
planets with greater accuracy.He also observed that Jupiter had fourmoons orbiting it. His work confirmed the
idea that the planetsmoved around the Sun and that gravity was responsible for those heavenlymotions.
Between them all, theyfirmly established the solar centricmodel for themotion of the planets around the Sun.

With that as a background,Newton [4, 5] placed gravity and gravitational effects on afirm foundation.He
introduced his universal law of gravitational attraction between two bodies ofmassesM andm, through the
equation

( )=F
GMm

r
1G 2

where FG is the gravitational attraction between the two bodies,G is Newton’s universal gravitational constant
and r is the distance between their centres ofmass. It was suggested thatHuygens derived a similar expression a
few years earlier, but never published [6]. Newton determined that, when the gravitational force varied as the
inverse square law of the distance between their centres ofmass, the planet would prescribe an ellipse about the
Sun, with the Sun being at the centre of one of its focal points. In his Proposition 45, volume 1,Newton also
showed that, if gravity were weaker than inverse square law, a planet’s perihelionwould precess in its direction of
motion. If it were stronger than inverse square, its perihelionwould regress against its direction ofmotion.

In his Proposition 31Newton introduced his shell theorem. Amass inside a spherical shell of uniform
thickness and density would not experience any gravitational attraction from that shell, irrespective of its
positionwithin the shell and its density and thickness. He also showed that gravity, whichwas believed to control
themotion of planets around the Sun, was responsible for holding objects on the surface of the planets. Gravity
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was universal. He did not determine the value ofG, his universal gravitational constant. Nor did he give a reason
for gravity to operate at a distance.

Improvements in telescopes allowedmore accurate observations. Newton’s work on gravitymatchedmost
observations for almost 200 years. Towards the end of the 19th century CE, it was noticed thatMercury had an
anomalous orbital effect (LeVerrier [7], Newcomb [8]. Astronomers observed that, viewed fromEarth,
Mercury’s total orbital precessionwas 5,600 arc sec per century (as/c) [9]. Newtonianmechanics predicted 5,557
as/c. Of that, 5026 as/cwere due to the precession of Earth’s axis of rotation.

The gravitational attraction of the planets gaveMercury’s perihelion an additional precession of 532.2 as/c.
That left a difference of almost 43 as/c. That was verified byClemence [10] and slightly refined by Park et al [11].
That was the difference explained by Einstein [12–15] in his publications of the gravitational field equations
fromhis theory of general relativity.

Those publications were of greatmathematical complexity.Most people found themdifficult to follow. They
arewidely acknowledged as an example of a theoretical study thatmade a great contribution to our
understanding of gravity. Their complexity and apparently puremathematical derivation led some to question
the validity of his work. Supporters of his field equations acknowledge his calculationsmust be correct because
theymatched every observation against which theywere tested.

His workmade significant advances overNewton’s work.His prediction that gravity was caused bymass
distorting space–time overcameNewton’s concern of action at a distance.He also predicted the anomalous
precession ofMercury’s perihelion. Other predictions included that timewould be slower near amassive object
and faster away from it. It was associatedwith radial distances becoming longer near amassive object and shorter
away from it. He also predicted the trajectory of light rayswould be altered by the presence ofmass, a rotating
masswould drag space–timewith it and that two bodies rotating about their common centre ofmasswould emit
gravity waves.

A prediction that came from solutions to his field equations is the existence of black holes. They have no basis
in physics. They are said to be an exact solution to Einstein’s gravitational field equations. Einstein did not
believe in their existence. Recent observations by the EventHorizonTelescope collaboration [16, 17] appear to
confirm their existence. Did thatmake Einsteinwrong?

It is suggested that an appraisal of the physics involved inmass distorting space–timewould give the physical
reasons for his predictions.Whitehead suggested it was only possible to derive the space–timemetrics from
mathematical considerations [18]. The objective of this appraisal is to show the physics behindmass distorting
space–time. From that it becomes possible to determinewhich effects are real andwhy.

2. Background

Einstein [19, 20] provided the background to his work. In his 1911 paper he studied the influence ofNewtonian
gravity on the propagation of light. It is suggested hewas able to do that because of his earlier work. In his study
on the photoelectric effect, Einstein [21, 22]determined that electromagnetic radiationwas transmitted as
discrete packets of energy, E, given by u=E h ,where h is Planck’s constant and υ is the radiation’s frequency.
Those discrete packets are now called photons. They travel at the speed of light, c. Their frequency, u, gives them
wavelength, l, related through u=c λ.

In that same year Einstein published his special relativity theory inwhich changes in length, time andmass
occurredwith increasing velocity [23, 24]. He established the relationship betweenmass and energy as =E mc .2

He also established that photons hadmass and imparted inertia between bodies [25, 26]. From that he derived

Figure 1. Schematic illustration of the increase in potential energy as a photon rises from r1 to r ,2 losing kinetic energy and hence
frequency.
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the expression for photonmass, m ,p namely

( )u
=m

h

c
2p 2

Photons havingmass and responding to gravity were verified experimentally [27–30]. That mp was themass
towhich Einstein [19, 20] appliedNewton’s inverse square law of gravity to determine the effects it had on the
propagation of light.

Figure 1 shows a schematic illustration of a photon, energy u=KE h1 1 at r1, moving distance ∆ = -r r r2 1

vertically against gravitational attraction. It was adapted fromEinstein [19, 20]. Projectiles are constantmass
particles that lose speed as they rise against a gravitational field. Photons are constant speed particles that lose
frequency and hencemass as they rise against a gravitational field. Both are constant energy particles that gain
potential energy as they lose kinetic energy whenmoving against a gravitational field of strength

( )=g
GM

r
3

2

where r is the distance from the centre ofmass of the object.
A photon rising distanceΔr from r1 to r2 gains potential energy given by

u
= DPE

h

c

GM

r
r

2 2

Conservation of energymeans that ∆= +KE KE PE2 1 , giving

( )u u u= +
D

h h h
GM r

c r
42 1 1 2 2

Re-arranging equation (4) gives
( )u u u u+ D = - Dh h h .GM r

c r2 2 Dividing by h and re-arranging gives

( )u
u
D

=
DGM

c

r

r
5

2 2

G,M and c are constants that can be combined to give a = .GM

c

2
2 Inserting a into equation (5) and setting the

limitΔr→0 gives

( )u
u

a
=

d dr

r2
6

2

Integrating equation (6) from r1 to r2 gives
u u- = - +a aln ln ,

r r2 1 2 22 1
which simplifies to

( )( )/ /= a a-v v e 7r r
2 1

2 21 2

Equation (7) can be applied to the frequency change of photons traveling from the Sun’s surface to Earth.
The sun’s Schwarzschild radius,α, is 2.954 km. Its surface radius is 7×105 km. Earth’s orbit radius is

1.49×108 km from the Sun. Substituting into equation (7) gives ( )∆ =u
u

-e x x

2.954

1.4 106
2.954

2.98 108 = 2.1×10–6.Within
experimental error, that is the same as was reported by Einstein [19, 20] and verified by observation [31–33].

That change in frequency is the reasonwhy observers in a low gravity field see known frequencies from a
strong gravityfield at a lower frequency. It is the cause of time dilation in a high gravity field. Einstein showed
that time dilation caused photons to be bent by a strong gravitational field.His calculation did not include a term
for space distortion. His prediction for bending of light rays passing close to the Sun’s surfacewas only half the
answer.

Equation (7)was as far as Einstein took those calculations. In his calculations, he used the linear form, /a r2 .
The above presented thework in greater detail, using the exponential form /ae r2 For very low deflections, the
results are indistinguishable.

3. Continuation

Through u=c λ, a change in frequency automatically generates a change inwavelength.When a photon’s
wavelength is changed, it is called a redshift and denoted z. It can be due to aDoppler effect or gravity and is
given by

l l
l

=
-

z r 0

0

where l0 is its original wavelength and lr is its wavelength at distance r from its origin.
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Using u=c λ, equation (7) can be re-written to give

( )/ /l l= a a-e r r
2 1

2 22 1

Setting l l=1 0 and l l= r2 gives

( )/= -az e 1 8r2

When that reduces to

( ) ar a, 8

( )/a=z r a2 8

Einstein [19, 20] showed that time distortionwas given by the change in photon frequency caused by the
strong gravitational field. In the samemanner, space distortion is caused by the change in photonwavelength. A
Newtonian distance dN becomes the relativistic distance, dRel, from the relationship

( ) ( )/= + =d d z d e1 9Rel N N
a r2

Newtonian time, tN , becomes the relativistic time, tRel , related by

( )
( )/=

+
= -t

t

z
t e

1
10Rel

N
N

a r2

Newtonian distances and times are replaced by Einstein’s relativistic distances and times.
Equations (9) and (10) are only good for determining what happens to bodiesmoving perpendicularly

towards or away from the centre ofmass of amassive object. They are no good for determiningwhat happens in
non-radial travel. For that, it helps to calculate the space-timemetric.

Minkowski [34, 35]merged space and time into a four-dimensional space-time continuum, given by:-

= - - -s c t x y z2 2 2 2 2 2

Where s is the space–time co-ordinate, x, y and z are the orthogonal Cartesian co-ordinates and t is time.
Obtaining the space-timemetric involved convertingMinkowski’s equation into a differential form and

transferring fromCartesian to polar co-ordinates. It has been donemany times and is virtually a standard
mathematical look up formalism. To help understand it, the following is a summary of the procedure used by
Schwarzschild [36]. It also includes the additions for the distortions of space and time by a gravitational field.

TheCartesian differential ofMinkowski’s equation becomes

{ } { }= - + + - + +ds Fdt H dx dy dz J xdx ydy zdz ,2 2 2 2 2

whereF,H and J are functionsof r when = + +r x y z2 2 2 . They take space–timedistortion into consideration.
Changing theseCartesian co-ordinates toPolar co-ordinates gives ( )= - + -ds Fdt H Jr dr2 2 2 2

( )q q j+Jr d dsin .2 2 2 2 To thatwemustnowadd the space and timedistortion factors producedby themass. From
equations (9) and (10)weget

= a-F e r , + = aH Jr e r2 and J=1. Inserting those gives

( ) ( )/ / q q j= - - +a a-ds dt e dr e r d dsin 11r r2 2 2 2 2 2 2

AMaclaurin/Taylor series expansion of a-e r yields

! ! (( ) !)a a a a= - + - ¼+ -a-e r r r r n1 2 3r n n2 2 3 3

For  ar , afirst approximation of equation (11) becomes

⎜ ⎟
⎜ ⎟

⎛
⎝

⎞
⎠ ⎛

⎝
⎞
⎠

( ) ( )a
a

q q j= - -
-

- +ds dt
r

dr

r

r d d1

1

sin 122 2
2

2 2 2 2

Equation (12) is one of the accepted solutions to Einstein’s field equations [37]. Other accepted alternative
equations include c2 associatedwith the dt 2 term and a reversal of polarity. Exact solutions fromMinkowski’s
space–time continuum should include c2. Normalization of constants to 1 is often used inmathematical
physics. The reversal of signs is associatedwith calculations fromdifferent directions.

Equation (11) is referred to as a ‘weakfield’ solution to Einstein’s gravity. Equation (12) and its variants are
referred to as the ‘strongfield’ solutions to Einstein’sfield equations. They predict that gravity is stronger than
Newton’s inverse square law.
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4.Matching some observations

Equation (7) already showed the calculationsmatched the observed redshift of photons from the Sun.Other
predictionswere gravitational lensing and theMercury’s anomalous orbital precession.

4.1. Gravitational lensing
Figure 2 shows the passage of a photon, g , travelling past amassive object of Schwarzschild radiusα, making its
closest approach at distance r0 from the centre ofmass. At distance r from the centre ofmass, O, it will experience
an instantaneous space distortion D a=d r2dist . The total space distortion it experiences is given

òD a=
-¥

+¥
rdr2dist . Since q=r r cos0 , that becomes

/

/

òD = =
p

p a q q a

-

+
.dist

2
d

r r2

. cos

2 0 0

Equations (9) and (10) show thatwhen there is a change in space distortion, there is a corresponding change
in time distortion. For small distortions, i.e.,a, that distortion is of equalmagnitude and opposite sign.
Equation (11) shows that

the total space–time distortion,Ds, is obtained by subtracting the two distortions. That gives

( )a
D =s

r

2
13

0

For the Sun,α=2.954 km and r0=700,000 km. Inserting those into equation (13) givesΔs=4.22×10–6

radian, or 1.74 arc seconds. That is the expected distortion of photons passing close to the Sun’s surface. Photons
measured at Earth have not travelled back to infinity. That slight decrease indicates themeasured deflectionwill
be closer to 1.73 arc seconds. Those calculations agreewith Einstein’s predictionwithin the approximations he
used and have been verified by observation [38, 39].

Figure 2. Schematic illustration of the deflection of a photon passing at distance r0 from the centre ofmass of amassive object atO.

Figure 3. Schematic illustration of the Sun’s redshift at different positions from its centre ofmass.

Table 1.The physical values needed to calculateMercury’s anomalous
orbital precession.

Physical property Value

Speed of light c 2.9979×105 km s−1

Newton’s universal gravitational con-

stantG

6.6743×10–11Nm2 kg−2

Sun’smassM 1.989×1030 kg
These values of c,G andM giveα 2.954 km

Mercury’s semimajor axis r0 57.91×106 km
Mercury’s orbital eccentricity e 0.2056

These values give redshift atMercury

orbit zM

2.663×10–8

Earth orbital radius 149.6×106 km
These values give redshift at Earth

orbit zE

0.987×10–8

Mercury orbital period MOrb 88 Earth days

Earth orbital period EOrb 365.25 Earth days
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It should be noted that a r2 0 is the redshift of photons from their distance of closest approach to themassive
object. Themathematics of gravitational lensing is that the total deflection, in radians, of a photon passing close
to amassive object is four times the redshift of photons at their position of closest approach to the centre ofmass.

4.2. Anomalous precession ofMercury’s perihelion
Observed fromEarth,Mercury’s total orbital precession is 5,600 as/c. Newtonianmechanics explained all but

about 43 as/c. Einstein [12] explained that difference through his equation,
( )

e p=
-

24 .a

T c e
3

1

2

2 2 2 More accurate

measurements now give his prediction ofMercury’s anomalous precession as 42.98 as/c.
Under this interpretation of Einstein’s work, equation (9) indicates thatNewtonian distances become

relativistic distanceswhenmultiplied by (1+z), where z is the gravitational redshift produced by the Sun at the
distance of interest. Figure 3 schematically illustrates the Sun’s redshift at different distances from its centre of
mass. Those figures were calculated from equation (8), using the data given in table 1.

Mercury’s corrected orbit radius ( )= -r r e1M 0
2 , becomes ( )+r z1 .M M That increase in radius can only

occur if the Sun’s gravitational attraction is less than inverse square. Itmeans thatMercury has to travel a greater
distance to complete an orbit fromperihelion to perihelion. That increased circumference, given by

( )p p pD = + - =r z r r z2 1 2 2 ,Circ M m M M M is the extra distanceMercury travels to complete an orbit. Its
angular precession per orbit, eM , is given by e D=r .M M Circ or e p= z2M M .

Figure 3 shows that Earth’s orbit is also affected by the Sun’s gravitational attraction. The space distortion
betweenMercury and Earthmust be corrected for the Sun’s redshift at Earth. That gives

( ) ( )e p= -z z2 14M M E

Mercury’s orbital period is 88 Earth days. In 100 Earth years, it willmake 415 orbits around the Sun.During that
time, Earthmakes 100 orbits around the Sun. FromEarth,Mercurywill only be seen tomake 315 orbits. As
observed fromEarth, equation (14) becomes

⎛
⎝⎜

⎞
⎠⎟( ) ( )/e p= - -z z

M

E
2 1 radian orbit 15M M E

Orb

Orb

Inserting the appropriate values from table 1, converting from radians to arc seconds andmultiplying by the
number ofMercury orbits per Earth century gives eM =42.99 as/c.

Asmentioned earlier, themost up to datefigures applied to Einstein’s calculations gave 42.98 as/c. There are
suggestions that the value observed by Park et al [11]differs from the predicted value by≈ 1.2 as/c, a value
considerably larger than the 0.01 difference between this approach and Einstein’s approach. That indicates the
two approaches are the same. It also indicates this approach explains the physics that underpins Einstein
calculations. Namely thatmass distorts distances, increasing lengths by the redshift z of photons. It is suggested
this calculation is easier to follow than derivations by Einstein and others. It has the advantage it can be extended
to other situations.

Einstein’s theories are called relativity because allmeasurement results depend upon the position of the
observer. There is no absolute reference point or frame.His theories enable observers in different places to
determine the results obtained by other observers in different reference frameswhen the speed of light is
constant for all observers.

Equation (15) can bemodified to obtain the general equation forMercury’s anomalous precession per orbit
for observers at different positionswithin the solar system. It becomes

⎛
⎝⎜

⎞
⎠⎟( ) ( )/e p= - -z z

M

O
2 1 radian orbit 16M M O

Orb

Orb

where z0 is the Sun’s redshift at the observer’s position and OOrb is the orbital period of the observer around the
Sun. Table 2 gives the expected results for some different positions associatedwith the solar system. Those results
are additional to the 532.2 as/c due to the precession caused by the gravitational pull of the other planets on
Mercury.

Notable features of table 2 are that an observer frombeyond the solar systemwould seeMercury’s
anomalous orbit precess an additional 90 arc secondswhen they had seen Earthmake 100 complete revolutions
around the Sun.Observers accelerated in retrograde Earth orbit and held in place by a large solar sail, would see
Mercury’s anomalous orbit precess by 56.63 arc seconds per Earth century. The further away is the observer
from the Sun, the larger will be the observed anomalous precession. Table 2 demonstrates that observations are
relative to the position of the observer.

In the samemanner, the general equation for the precession of a satellite orbiting the Sun andmeasured
fromEarth, in radians per satellite orbit, becomes

6
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⎛
⎝⎜

⎞
⎠⎟( ) ( )e p= - -z z

S

E
a2 1 16S E

Orb

Orb

where zS and SOrb are the Sun’s redshift at the satellite’s corrected orbit and its orbital period respectively. The
closer the satellite orbited the Sun, the greater are other effects such as the Sun’s oblateness and its radiation and
solar wind.

The general expression for the precession, in radians per orbit, of any object about amassM external to the
solar system is given by

⎛
⎝⎜

⎞
⎠⎟( )

( )e p p
a

p=
-

= =
GM

c e r r
z2

1
2

2
2 17

O

M

OC
OC2 2

whererO is the orbiting body’s semimajor axis, aM is themassive body’s Schwarzschild radius and zOC is its
redshift at the orbiting body’s corrected semimajor axis r .OC

Newton predicted that, if gravity was inverse square a planet would prescribe an ellipse around the Sun, with
its aphelion and perihelion always returning to the same points, as shown infigure 4(A). If gravity wereweaker
than inverse square, the planet travels further away from the Sun and under the influence of aweaker force. That
greater distance causes it to return to its aphelion and perihelion positions a little later. It will precess in its
direction of orbit, as shown in 4B.

If gravity were stronger than inverse square, the planet would orbit a little closer to the Sun. It would have to
travel a shorter distance under the influence of a stronger force to return to its aphelion and perihelion positions.
Theywould be reached a little earlier. Its perihelionwould regress in the opposite direction to the orbiting
planet, see figure 4(C).

It should be noted that the accepted Schwarzschildmetrics, equation (12) and its variants, all have the term
- a1 .

r
They are recognized as the strong field solution to Einstein’s gravitational field equations. They all predict

that gravity will be stronger than inverse square. By themechanismworked out byNewton and presented above,
it is not possible for an orbit’s perihelion to precess in its direction of travel if gravity is stronger than inverse
square.

That poses a problem for thosewho accept the Schwarzschildmetric as an exact solution to Einstein’s
gravitational field equations.

It is herein suggested themathematical complexity associatedwith Einstein’s calculationsmade it easy to
overlook the sign and interpret a predicted regression as a predicted precession. AsNewton showed, and
supported by this presentation, there is simply no physical way inwhich a gravitational field that is stronger than
inverse square can cause an orbiting body to precess in its direction of orbit.

Orbital precession requires gravity to beweaker than inverse square so that a body has to travel further to
complete its orbit fromperihelion to perihelion. Einstein did not calculateMercury’s total orbit and derive the

Figure 4. Schematic illustration of change in planetary elliptical orbits depending upon the nature of the attraction.

Table 2.The precession ofMercury’s orbit in arc sec per Earth century asmeasured fromdifferent positions.

Observer position zO× 10–8 /M OOrb Orb Per Earth century, arc sec

FlatMinkowski space–time 0 ∞ 89.99

Stationary at EarthOrbit 0.987 ∞ 56.63

EarthOrbit 0.987 0.241 42.99

MarsOrbit 0.648 0.128 59.38

SaturnOrbit 0.103 0.0082 85.86
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difference between his andNewton’s calculations as 43 as/c. He calculated only the difference his theory
introduced toNewton’s calculations.

The approachused in this derivation, basedonphoton redshift,was similar. It startedwithNewton’s gravity and
added its effect onphotons. It showed theneworbital distance thatMercuryhad to travel to complete aperihelion to
perihelionorbitwas ( )p +r z2 1M M .Mercury’sNewtonianorbit of pr2 M was subtracted to arrive at its anomalous
precessionof pz2 M =42.99as/c. Both approacheshave a close relationshipwithNewton’s calculations.

Even ifMercury’s orbitwere circular, thatdifferencewouldhavebeenpickedupbecause changes in its orbitwere
first determinedby its transits across theSunbetween1677and1881 [8]. The elliptical orbit calculationmakes the effect
easier to recognizeprecession inother orbits.A change inorbital radiusof adistantobjectwouldnotbe recognised.

5. Comments on Einstein’s calculations

Themajority of Einstein’s 1916 paper on ‘The Foundations of theGeneral theory of Relativity,’ [14]was taken up
with tensor studies, the purpose of which included establishing the relationship between the four-dimensional
space–time co-ordinates under the influence of gravity.Whether tensors clarify or confuse the reader, depends
upon the reader’s understanding of them.

The above redshift calculations havematched Einstein’s predictions of photon redshift, gravitational lensing
and orbital precessions. They indicate the process bywhichmass distorts space–time is through changes in the
wavelength and frequency of photons. It becomes a philosophical question as towhethermass distorts space–
time to produce gravity that distorts photons, or gravity is produced bymass distorting photonwavelengths,
which equates to space–time distortion. In either event, the calculations are the same.

The redshiftmetric of equation (11) and its associated calculations do notmatch predictions under the
Schwarzschildmetrics of equation (12) and its equivalents. The latter predict that gravity is stronger than
expected underNewton’s inverse square law. At the same time the calculations for equation (15) show that, in
order forMercury’s orbit to precess, gravitymust be weaker than inverse square. That was predicted byNewton.
Did Einsteinmake amistake in his calculations?

Withmanypeople not understanding the complexity of hiswork, some suggest he did. In his publicationon
TheFoundationof theGeneral Theory ofRelativity, Einstein introduced approximations. After derivinghisfield
equations, (47), he pointed out ‘There is only aminimumof arbitrariness in the choice of these equations’.Hewent on
topoint out the reasons the equationswere not exact. In that passage he acknowledgedhis use of approximations.

In section 22 of his Foundations paper, Einstein [14, 15] derived ( )= - + ag 1 .
r11 From that it follows that,

for  ar ,
⎜ ⎟⎛
⎝

⎞
⎠

= a
+

dx .

r

1

1
2

Hewent on to indicate that ‘.. correct to a first order of small quantities = - adx 1
r2
..

(71)’.When a
r2
≈2×10–8, see figure 3, his equation (71) is a very valid approximation. Equation (8)

show =a z.
r2

After his equation (71), he stated ‘The unitmeasuring rod thus appears a little shortened in relation to the system
of co-ordinates by the presence of the gravitational field, if the rod is laid along a radius’. That could appear to be in
conflict with equation (9), which points out that relativistic lengths were longer thanNewtonian lengths by
(1+z). In its full context, it ‘appears a little shortened’, by (1−z), because the background against which it was
observedwas lengthened by (1+z).

There is nothing in and around Einstein’s equation (71) that could be construed as gravity was stronger than
inverse square, thus shortening lengths.

Additionally, the abovework is in agreementwith his calculation that lengths increase by (1+z). Both
approachesfind that, ‘correct to afirst order of small quantities’,mass increases length by the redshift z . That canonly
occur if gravity isweaker than inverse square, a pre-requisite condition for anorbiting body’s perihelion to precess.

Apart fromhis approximations, it couldbe stated there is oneotherproblemassociatedwithhiswork. It appears so
complex thatmost of thosewho tried to follow itwere confused.That is not an errorbyEinstein.His approximations
appear tohave causedproblems for thosewhoattempted toprovide exact solutions tohisfield equations.

Two examples offield equations, Einstein’s original, his 47, and amodernRicci tensor format, equation (22),
are given below.

( )
¶G

¶
+ G G =mn

a

a
mb
a

na
b

x
0 E47

- =g 1

( )p
- =m m mR Rg

G

c
T a0.5

8
22v v v4
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Their generally accepted solutions take one of the variations in equation (12). The problemposed by those
solutions is that they are exact solutions to the approximationsmentioned above. Exact solutions to
approximations are still approximations.

6. Comparing the different gravitational predictions

The above has shown thatMercury’s anomalous orbital precessionwas caused by gravity beingweaker than
inverse square law. That extends the circumferential distanceMercury had to travel to return to its perihelion
position in each orbit. That additional distancewas given by the redshift z.Anobject ofmass m at a distance r
from the centre ofmass of a body ofmass M experiences a gravitational attraction =FG

GMm

r2 and travels a

distance pr2 tomake one complete revolution. For the circumference to increase from pr2 to ( )p +r z2 1 , the
gravitational attractionmust decrease to

[ ( )]
( )=

+
F

GMm

r z1
18G 2

Inserting equations (8) into (18) gives

( )=
a

F
GMm

r e
19G r2

fromwhich the acceleration due to gravity becomes

( )=
a

g
GM

r e
20z r2

The gravitational field equations derived by Einstein, plus the variants by others following his work, are
general equations fromwhich the gravitational acceleration due to the presence of themass M can be calculated.
Equation (20) gives the direct expression for the acceleration due to gravity at different distances, r , under this
redshift study. In the samemanner, equation (3) gives the acceleration due to gravity for any distance, r, under
Newtonian gravity.

Figure 5.Plots of the relative accelerations due to gravity under the different equations given in table 3.

Table 3.The gravitational attraction and
accelerations due to gravity for different
distances from the centres ofmass of objects of
anymassM.

Gravity theory Acceleration due to gravity

Redshift
[ ( )]

= =
+ agZ

GM

r z

GM

r e1 r2 2

Newton =gN
GM

r2

Schwarzschild
⎜ ⎟
⎛
⎝

⎞
⎠

[ ( )]
= » a- -

gS
GM

r z

GM

r
r1 1

2 2
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Equations (3) and (20) enable the direct calculation of the gravitational field strength at any distance r from
the centre ofmass of any object of anymass M.Using the approximations introduced by Einstein, the
gravitational force and acceleration due to gravity can be determined for the Schwarzschildmetric by replacing r
by ( )-r z1 .Einstein’s approximationsmean it is only accurate for  ar .Even then, only if no other errors are
introduced.

The equations for the three different theories are shown in table 3. The terms for the acceleration due to
gravity can be used to calculate the strength of gravity at any radial distance r from the centre ofmass. Table 3 has
the advantage over gravitational field equations in that the values can be calculated for any value of M and r .
Examples of some calculations for M and r expressed in terms of a, the Schwarzschild radii, are given in table 4.

Table 4’sfirst column gives the various distances expressed as a function of ar . The other columns give the
results for the relative gravitational strengths under the different theories indicated above them. In all cases, the
stated results are for bodiesmoving directly towards the centre ofmass of M.The actual accelerations are
determined bymultiplying the calculated values by GM.

The table 4 results are plotted infigure 5 and joined by smooth curves. As expected from tables 3 and 4, the
redshift results, g ,Z are always weaker than the inverse square law. The Schwarzschild results are always stronger
than the inverse square law. As the distance from the centre ofmass increases, the gravitational strengths tend
towards the same value. At a=r 10 , the differences between the redshift and Schwarzschild results are about
10% either side of theNewtonian acceleration.

At a»r 5 , the threemetric accelerations start to differ significantly. Newtonian acceleration tends to
infinity at r=0.Gravitational acceleration under the Schwarzschildmetric tends to infinity at a=r .Both are
as expected.

Gravitational acceleration under this redshiftmetric gets stronger closer to the origin, although it is weaker
than inverse square and Schwarzschild acceleration. At r<0.5 a, space–time distortion, given by ae ,r

dominates the inverse square law and gravity becomesweaker as r tends further towards 0.
Thatmay seem like a surprising result. It should be considered from the perspective ofNewton’s shell

theorem. A body anywhere inside a spherical shell of uniformdensity and any thickness will not experience any
gravitational attraction from the shell surrounding it.When applied to a large body like the Sun, itmeans that
therewill be no gravitational attraction at the Sun’s centre. The pressure will be high, but therewill be no
gravitational attraction. A similar principle applies to amuchmoremassive object, although for a different
reason.

The above offers a simpleway of determining the acceleration due to gravity under any of the three theories.
It requires knowledge of themass M of the attracting body, to calculate the Schwarzschild radius a.Convert the

Table 4.The accelerations due to gravity for different distances under the
different theories, with distances expressed as functions of the
Schwarzschild radius a.

Distance Redshift Newton Schwarz-schild

ar µgZ
ar e1 r2 µg r1N

2 µgS ( )- a r1 1
r

2

10 9.048×10–3 1.00×10–2 1.11×10–2

9 1.101×10–2 1.23×10–2 1.263×10–2

8 1.377×10–2 1.56×10–2 1.783×10–2

7 1.899×10–2 2.04×10–2 2.380×10–2

6 2.353×10–2 2.78×10–2 3.366×10–2

5 3.618×10–2 4.00×10–2 5.000×10–2

4 4.867×10–2 6.25×10–2 8.333×10–2

3 7.963×10–2 0.111 0.167

2 0.1516 0.250 0.500

1.5 0.2282 0.444 1.337

1.0 0.3679 1.000

0.9 0.4062 1.234

0.8 0.4475 1.562

0.7 0.4890 2.041

0.6 0.5245 2.778

0.5 0.5413 4.000

0.4 0.5130 6.250

0.3 0.3956 11.11

0.2 0.1648 25.0

0.1 4.54×10–3 100

0.05 8.35×10–7 400

10

J. Phys. Commun. 5 (2021) 035013 VNERobinson



distance, r, from the centre ofmass to the positionwhere it is desired to determine the acceleration, to the ratio
a r.Put those values into the appropriate equation from table 3 and calculate the acceleration directly.

Figure 5 displays the strengths of the gravitational fields in one dimension. To appreciate the field in the three
spatial dimensions, it is necessary to rotate the curve through 360° about the horizontal axis and through 180°
around the vertical axis.

Figure 6 show a two-dimensional slice through a three-dimensional representation of the accelerations due
to gravity under the different theories. It was obtained by rotating the curves in figure 5 through 180° about the
horizontal axis. Thatwas followed by rotating the compound curves about the vertical axis. They show the
accelerations due to gravity, vertical axis, against distance from the centre ofmass shown in the horizontal axis.
The vertical axis represents the distortions in space–time caused by themass atO.

What are called the distortions of space–time are the accelerations due to gravity at that point in space. Any
particle that experiences a distortion in space–timewill be accelerated by that distortion in the direction of
increasing distortion.

It is suggested that the gS equation and curves providemost people with a better understanding of the nature
of the Schwarzschildmetric than dofield equations such as these in equations (21) and (22).

( )p
+ L =m mu muG g

G

c
T

8
21v 4

( )p
- =mu mu muR Rg

G

c
T0.5

8
22

4

Asmentioned earlier, the approximations Einstein used in developing hisfield equationsmean that, in the
absence of other errors, the Schwarzschildmetric equations are only valid for  ar .They are the conditions
underwhich - a1

r
is observationally indistinguishable from

⎜ ⎟⎛
⎝

⎞
⎠

a
+

.

r

1

1

As is shown in section 7, other errors were introduced in the accepted solutions to Einstein’s field equations.
They result in the Schwarzschildmetric calculations beingmathematically incorrect and physically impossible.
The failure ofNewton’s inverse square law tomake accurate predictions leaves the redshiftmetric as the best
representation of gravitational effects for space outsidematter.

Table 4 andfigures 5 and 6 indicate that the gravitational field strengths of the redshiftmetric are notmuch
different fromNewtonianmechanics for a>r 5 .As such, reasonably accurate predictions of reshift
gravitational values can bemade usingNewtonianmechanics, with a slight end correction for the redshiftmetric
equation.

To understand the effects of the redshift gravity, consider the situation of a ball rolling along the redshift
gravity profile at the bottomoffigure 6. It will be subject to stronger gravitational attraction as it gets close to

a=r 0.5 . It will reachmaximum speed at that distance. From there it will continue on, rising against the

Figure 6.Two dimensional representations of the three-dimensional plots of the relative accelerations due to gravity under the
different equations given in table 3.
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gravitational attraction. If it is captured byO, it will stay put. Otherwise it will roll backwith increasing speed.
The same applies to particles under the influence of this redshiftmetric.

The approximate speed an incident particle will reach as it approaches a=r can be determined by the
reverse of the escape velocity. TheNewtonian equation for the escape velocity,VeN

, for distance r from a
gravitationally attractingmass, M, is given by

( )a
= =V

GM

r

c

r

2
23e

2

N
2 2

Adjusting for the redshiftmetric gives

( )a
»

a
V

c

re
a23e r

2

2Z
2

Setting a=r , equation (23) give the escape velocity for a particle at the Schwarzschild radius of≈ 0.75 c. That
alsomeans that particles falling inward under the influence of gravity could achieve a velocity up to≈ 0.75 c. That
shows relativistic velocities canbe achieved if incoming particles donot collidewithother particles before reaching

a=r .Electrons reaching speeds≈ 0.75 c have to be accelerated through≈ 1MeV.That corresponds to
temperatures in the vicinity of≈ 1010°K.Thosefigures dependupon theobject being sufficientlymassive that its
Schwarzschild radius is somewhat larger thandouble its physical radius.

Particles do not travel along a radius as they approach the centre. Their different trajectories will cause them
to collidewith other particles close to the centre.With those collisions and other competing factors, it is difficult
to determine a definite value for the speed of particles that reach a=r 0.5 . The best that can be indicated is that
theywill be relativistic. Collisions will result in significant energy release. These could correspond to
temperature up to≈ 1010°K.Without further corrections for relativistic effects and the distribution ofmass at a
radius of a0.5 , that energy release will be concentrated around the radius a=r 0.5 .

Themaximumgravitational strength at a=r 0.5 is not a solid surface. Particlesmoving through it from
outsidewould be attracted back to it if theywere not captured by the centralmass. Particlesmoving away from
the centre would also be attracted back towards a=r 0.5 .Thatwould result in the accumulation of high energy
particles in the vicinity of a=r 0.5 .Theywouldmove at relativistic velocities in randomdirections. Rapidly

moving particle couldmove outside that radius. From = ag ,Z
GM

r e r2 we can replace GM by ac0.5 2 and r by a0.5

to get =
a

g .Z
c

e

2 2

2 That attraction is sufficiently strong that particles with relativistic speedswould be reduced to

classical speeds at a>r . In the absence of other effects, it appears unlikely that high energy collisions would
generate a significant signal at a>r .

Figure 7, a reproduction of gz taken from figure 6, shows the expected result would be the emission of high
energy radiation in a torus shape if the incoming particles were preferentially aligned. The insert shows the
expected extent of the emissions fromwithin the torus, when viewed perpendicularly to its preferential plane. Its
predicted central radius is at a»r 0.5 The intensities are entirely due to the emissions. They do not require any
light bending around themassive object. A feature of the escape velocity equations and figure 7 is that particles
can attain high energies, equivalent to temperatures up to≈ 1010°K,without the need for the strong gravity
predicted by the Schwarzschild solution.

Figure 7.A two dimensional representations of the relative accelerations due to gravity under the redshiftmetric. The insert shows the
expected torus distribution of radiation emitted from an accretion disk that would accumulate around a»r 0.5 .
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7. The exact solution to Einstein’s gravitationalfield equations

There are several formats to Einstein’s gravitational field equations. They all provide solutions that contain the

term ( )- a1 .
r

Equation (12)was derived as afirst approximation to an exact solution to the redshift of photons

caused by the presence of a gravitational field. Other derivations of equation (12) and its variants are complex.
Thefirst solution to Einstein’sfield equations was provided by Schwarzschild [36]. He introduced an
approximation as he derived

⎜ ⎟
⎜ ⎟

⎛
⎝

⎞
⎠ ⎛

⎝
⎞
⎠

( )a
a

q q j= - - +
-

+ +ds dt
R

dr

R

R d d1

1

sin2 2
2

2 2 2 2

( )a= +R r 243 3 33

When  ar , equation (24)merges into equation (12). Equation (24) did not predict a singularity at >r 0.
It did not predict black holes, inwhich Einstein never believed. It was still an approximation andwas rejected in
favour of ‘exact’ solutions.

The equation below is Einstein’s equation (53).

( ) ( )¶
¶

G + G G = - -mn
a

mb
a

ma
b

mn mnx
K T g0.5 E53

a

Like equations (21) and (22), it contains the terms mng .All ‘exact’ solutions by different authors have the term

( )- a1 .
r

Themode of derivation of the solution from the various equations is not as important as the origins of

the term ( )- a1 .
r

That can be determined by evaluating the term mng . It is common in gravitational field

equations and is shown in equation (25).

( )

=
=

mng

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g 25

xx xy xz xt

yx yy yz yt

zx zy zz zt

tx ty tz tt

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

The numbers 1, 2 and 3 in mng represents the orthogonal directions x, y and z respectively. The number 4
represents time t.The symbol g represents aspects of the gravitational field. For example, g11 represents its rate
of change in the x directionwith x. g12 represents the rate of change in the x directionwith y . g14 represents its
rate of change in the x directionwith time t . And so forth.

Just before his equation (71), Einstein derived ( )= - + ag 1 .
r11 In radial travel towards or away from the

centre ofmass, g11 can be used as themeasure of the change of the g factor towards or away from the centre of
mass. Because that change is due to the change in the photon’s wavelength, l, it follows that g44, which is due to
the change in frequency,must be the negative inverse of g .11 Thatmakes

⎜ ⎟⎛
⎝

⎞
⎠

( )
a

=
+

g

r

1

1

2644

Einstein noted that ‘- = g dx1 11 1
2’. Setting =dx dx,1 because x is the only direction being considered, it

follows that ( )=
+ adx .1

1
r

2 As an approximation, when  ar , that gives = - adx 1 ,
r2
which is what Einstein

stated in his equation (71). In his equation (70), Einstein stated, ‘.. to the first approximation.. = - ag 1 .
r44 ’

Again, because of equation (26), that is a goodfirst approximationwhen  ar .

Figure 8. Schematic illustration of how gravity in the x direction has an equal value in the orthogonal y and z directions.
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Table 5 lists the terms as derived by Einstein, as he approximated them and as others incorporated them

into the Schwarzschildmetrics. Einstein’s derivations involving the term ( )+ a1
r

were exact within the

approximations he used. It appears his approximations involving ( )- a1
r

were incorporated intowhat are now

called the Schwarzschildmetrics. It is believed that led to the ‘strongfield solutions’ of Einstein’s field equations.
When  ar , itmakes no difference for the corrections needed for accurate global positioning systems and

to beweaker than inverse square law. All forms of the Schwarzschildmetric derived solutions use the term

( )- a1 .
r

As shown in tables 3 and 4 andfigures 4 and 5, they can only produce a gravitational attraction that is

stronger than inverse square law. They cannot give the observed orbital precession.
In the above calculations, g11was referenced to the x direction. In a radially symmetric situation, there is

nothing special about the direction of x. The other orthogonal directions, y and zwould have gravitational fields
of the same strength as g11 at the same radius r. Figure 8 is a schematic illustration of that effect. To determine the
fullmetric, it is necessary to label the x direction as r , convert the y and z contributions to r , q andj and add
them.When that is done, the general expression for the space–timemetric becomes

∣ ( )∣ ( )q q j= + + +ds g dt g dr r d dsin 282
44

2
11

2 2 2 2 2

The g11 and r2 terms are added because they deal with the spread of the gravitational field through all three
orthogonal directions. Because g11 is negative, equation (28) becomes

( ) ( )q q j= - - +ds g dt g dr r d d asin 282
44

2
11

2 2 2 2 2

Fitting Einstein’s calculated terms for g11 and g44 into equation (28a) gives the exact solutions to Einstein’s
field equations as

⎜ ⎟
⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( ) ( )

a
a

q q j=
+

- + - +ds
dt

r

dr
r

r d d

1

1 sin 292
2

2 2 2 2 2

It is herein designated as the Einsteinmetric.
Einstein’s gravitational work has led to three gravitationalmetrics. His 1916 paper on ‘The Foundations of

theGeneral
Theory of Relativity’ [14] leads directly to equation (29).When others expanded his work, they included the

approximations he used, as shown in table 5.When they are inserted into either of equation (28), they give
equation (12), namely

⎜ ⎟
⎜ ⎟

⎛
⎝

⎞
⎠ ⎛

⎝
⎞
⎠

( ) ( )a
a

q q j= - -
-

- +ds dt
r

dr

r

r d d a1

1

sin 122 2
2

2 2 2 2

The expansion of Einstein’s paper [19, 20] presented above, derived equation (11), repeated here for ease of
comparison.

( ) ( )/ / q q j= - - +a a-ds dt e dr e r d d asin 11r r2 2 2 2 2 2 2

The differences between the threemetricsmake no difference for situations such as accurate global
positioning systems and international timing. It does notmake any difference to themagnitude of the
anomalous precession inMercury’s perihelion. It doesmake a change to the direction of that precession. The
‘strongfield’ solution implies orbital regression.

8.Discussion

Table 6 lists some properties of the differentmetrics. Thefield status relates toNewton’s inverse square law. As
far as gravitational attraction is concerned, when  ar , equations (11), (12) and (29) all trend toNewtonian

Table 5.The terms g11 as derived by Einstein, as he approximated and as used in the Schwarzschild
metrics.

Term Derived by Einstein Einstein’s approximation Used in Schwarzschild solutions

g11 ( )- + a1
r ( ) ( )- » -

- -a a
1

1

1

1
r r2

2 ( )-
- a
1

1
r

g44 ( )+ a
1

1
r

( )- a1
r ( )- a1

r
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gravity. The g11 terms separate the equations (11), (12) and (29) gravitational fields fromNewtonian inverse
square gravity. Einstein acknowledged his equations were approximations.

Equation (8) shows that, under those conditions, = az .
r2
That changes the denominators for the

gravitational acceleration equations derived from equations (29), (12) and (11) to ( )+ z r1 2, ( )- z r1 2 and
[( ) ]+ z r1 2 respectively. As long as there is no detectable effect of redshift, Newton’s inverse square law of gravity
willmatch all observations.

An important feature of table 6 is that the exact solutions to Einstein’s gravitational field calculations,
equation (29), and the exact extension of his 1911 paper, equation (11), both predict that gravity will beweaker
than inverse square law. It follows that those equations predict orbital precession and do not predict the
existence of black holes.

The prediction of black holes requires gravity to be stronger than inverse square—‘the strong field solution’.
When gravity is stronger than inverse square, the orbiting bodywill travel closer to the attracting body and
complete a perihelion-to-perihelion orbit slightly earlier. That would cause its perihelion position to regress.

The accurate prediction of the anomalous precession ofMercury’s perihelion and the observation of the
precession of star S2 orbiting themassive object in Sagittarius A [40, 41] at the centre of our galaxy, confirm
orbital precession has been detected. They require the gravitational attraction to be less than inverse square.
Those observations physically exclude the possibility thatmass has distorted space–time tomake gravity
stronger than inverse square, excluding the possibility of black holes.

Figure 9 shows plots of the relative gravitational field strengths due to Einstein’smetric, the redshiftmetric
andNewton’s inverse square law. The Einstein gravity curvewas drawn from calculations of g ,E done in the same
manner as those in table 4. It shows the differences between the Einstein and redshiftmetric gravitational field
strengths. The Einsteinmetric has approximately the samefield strength as the redshiftmetric until about

a=r 3 .After that it rises rapidly.

The gE gravitational formula isNewton’s inverse square lawmultiplied by ∣ ∣g .11 Einstein’s ∣ ∣g11 ( )= + a1
r

equates to ( )= +g z1 2 .11 At z 1, the valid region of the approximations Einstein used, ( )+ »z1 2
( )+ = az e1 ,r2 which is the redshiftmetricmodification toNewton’s inverse square law. That is presented as a
further indication that his mng termswere the variationswith redshift terms associatedwith Einstein’smass
distorting space–time theory of gravity.

At  ar , it is not possible to distinguish between the Einstein and redshiftmetrics because » +a ae 1 .r
r

2
2

They predict the same values within experimental error.

Figure 9.Plots of the relative accelerations due to gravity underNewton’s theory, Einstein’smetric and this redshift studymetric.

Table 6. Some gravitational properties under the different gravitational
theories andmetrics.

Metric Gravity

Field

Status Orbit Status

Black

Hole

Newton GM

r2 NoChange No

Einstein
⎜ ⎟
⎛
⎝

⎞
⎠

a
+

GM

r
r1 2

Weak Precess No

Schwarzschild
⎜ ⎟
⎛
⎝

⎞
⎠

a
-

GM

r
r1 2

Strong Regress Yes

Redshift a
GM

r e r2 Weak Precess No
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They both predict orbital precession. Figure 9 shows the only difference is in the region a»r .The only
results available in that region are from the EventHorizon Telescope collaboration images, one of which is
shown infigure 10(A).

It was presented as being of a black hole at the centre of galaxyM87, approximately 55million light years
away. Figure 10(B) is extracted from figure 7 and presented side by side at approximately the same scale. It is
suggested their similarity ismore than co-incidence. Suggestions were that itsmass was about 5 to 7 billion solar
masses. It is suggested themass estimates were based on the Schwarzschildmetric.

Predictions under the redshiftmetric would give a highermass. There is nothing in the above that excludes
mass from accumulating to any amount.

A feature of this work is that the redshiftmetric is the only one that predicts the torus shape for amassive
object and the observed orbital precessions. Those predictions are a good indication that the redshiftmetric
applies for all values of ar in space–time outsidematter. Apart from its inability to predict orbital precession,
the Schwarzschildmetric is only accurate for  ar . It has only been tested up to a» -r 10 6 . As shown in
figure 9, the Einsteinmetric is good for a>r 3 .

Figures 5, 6 and 9 and their associated equations, show that when,  ar the gravitational field strengths all
trend towardsNewton’s inverse square law values. As all gravitational waves are detected at distances where
ra their detection is independent of themetric used for their generation.

Einstein’s great contributionwas to show that gravity worked bymass distorting space–time. That removed
all concern about gravity acting at a distancewith no apparent reason. This work shows that space–time
distortionwasmeasured by photon redshift. Einstein’s work involved determinations of the differences caused
by detectable redshift effects.

In the above calculations, that effect was to introduce a redshift term into the denominators in equations (1)
and (3). Einstein’sfield equations approximations changedNewton’s r2 to ( )+ ar 1 .

r
2 The doubly

approximated Schwarzschildmetric changed it to ( )- ar 1 .
r

2 This redshift study changed it to ar e .r2 Beyond

those and the extensions that come from them,Newtonian gravity is otherwise unchanged.
It is possible that some authorsmay have derived the accepted Schwarzschildmetric without reference to

Einstein’s field equations. In that case, they are not solutions to his field equations. They all face the problem that
gravity stronger than inverse square physically cannot generate the observed precession of bodies orbiting
massive objects that create detectable redshifts.

It is suggested that knowledge of Einstein’s equation = mn m nds g dx dx2 , his determination of g11, fromwhich
g44 is automatically derived, plus equations (25) and (28), which include the conversion fromCartesian to Polar
coordinates, are sufficient to derive themetrics.

9. Summary and conclusions

Newton’s inverse square law of gravity forms the basis of all gravitational studies. Newton gave no reason for
gravity to act at a distance. This study started outwith Einstein’s 1911 approach of applyingNewton’s gravity to
photons that havemass. From that, terms for the variations of photonwavelength and frequencywith
gravitational fieldwere determined. It showed that a gravitational field increased distances from d to ( )+d z1
and decreased frequency from u to ( )u + z1 .They are the space and time distortions towhich Einstein
referred. Theywere used tomatch some of his calculations such as the anomalous precession ofMercury’s orbit,
gravitational lensing and photon redshift. It is believed the calculations were simpler to follow than derivations

Figure 10. Image from the EventHorizonTelescope collaboration, showing the bright torus shaped structures detected in the centre
of galaxyM87 [16, 17], A Reproduced from [17]. CCBY 4.0. B shows the expected torus shape of emissions from amassive object
under this redshiftmetric. Bwas adjusted to the same image size as A.
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used by Einstein and others. Theirmatch shows that it was the same theory. It also shows that Einstein’s gravity is
founded on distance and time changes associatedwith photon redshift.

Einstein’smathematical approach and his use of approximationsmade it difficult formany people to follow
his work. By his own admission, Einstein’sfield equations were approximations. Exact solutions to
approximations always remain approximations. This study suggests his approximations were valid for

The Schwarzschildmetrics, forwarded as exact solutions to his field equations, were based around incorrect
interpretations of the approximations he used. They led to a prediction that gravity could be stronger than
inverse square law. That is clearly at oddswith observed orbital precessions. This appraisal of Einstein’s gravity
removed those approximations and derived an exact solution to hisfield equations. It allowed for orbital
precession because gravity wasweaker than inverse square. It did not predict the existence of black holes, in
which Einstein never believed.

An exact expansion of Einstein’s 1911 studywas derived. It predicted the strongest gravitational field at
a»r 0.5 , if the object’smass was so great that its physical radius was smaller than half its Schwarzschild radius.

Particles of relativistic velocity would swirl around near that radius. Their collisions would cause them to emit
high energy radiation froma torus shape. Its prediction has the shape and approximate dimensions observed by
the EventHorizonTelescope collaboration. That strongly suggests the exact redshiftmetric, equation (11) is
applicable for all values of ar .

It is believed this redshiftmetric willmatch all observations for space–time outsidematter. It shows that
Einstein’smass distorting space–time ismeasured by photon redshift.When the effects of redshift are not
physically detectable, Newton’s inverse square law of gravity willmatch all observations. It is suggested that
vindicates the approximations he used. At a<r 3 , the redshiftmetric is required.

The Schwarzschildmetrics fail because they are only valid for  ar and predict gravity stronger than
inverse square. They only allow for the perihelion of orbiting objects to regress against their direction of travel.
Appropriate orbiting bodies show a perihelion precession that can only be achievedwhen gravity is weaker than
inverse square. Predictions of black holes have no physical foundation. They also have no foundation in
Einstein’s gravitational field equations fromhis general theory of relativity. Einstein never believed in them,
suggesting hewas right yet again!
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