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Abstract: A general formula for inversion in a relativistic Clifford-Dirac algebra has been derived.1

Identifying the base elements of the algebra as those of space and time, the first order differential2

equations over all quantities proves to encompass the Maxwell equations, and leads to a natural3

extension incorporating rest mass and spin. Despite the fact that this algebra is not a division4

algebra it seems to parallel reality well: where division is undefined turns out to correspond to5

physical limits, such as that of the light cone. The divisor corresponds to invariants of dynamical6

significance, such as the invariant interval, the general invariant quantities in electromagnetism,7

and the basis set of quantities in the Dirac equation. The study suggests other Lorentz invariants8

that may prove of interest, including one relating the spin and total energy. It is speculated that the9

apparent 3-dimensionality of nature arises from a beautiful symmetry between the three-vector10

algebra and each of four sets of three derived spaces in the full 4-dimensional algebra. It is11

conjectured that elements of inversion may play a role in the interaction of fields and matter.12

Keywords: invariants ; inversion; division; non-division algebra ; Dirac algebra ; Clifford algebra13

; geometric algebra ; special relativity, photon interaction14

1. Introduction15

This paper investigates the interplay between the mathematics of inversion, division16

and differentiation in a particular relativistic non-division algebra and the physics well-17

described by that mathematics. The main result is purely mathematical: a general18

formula for the inversion of a general multi-vector within the algebra. The main interest,19

however, lies in the how and the why of the relation of the mathematics to physical20

reality. Springing between mathematics and physics can be confusing. To help in this,21

lower case letters will be used to describe pure mathematics. Where physical associations22

are brought in, upper case letters will be used. The physics presented will be either23

illustrative or speculative.24

For the identification with physics, the inversion symmetries of relativistic space,25

time and products and quotients of space and time, will prove central. It will be shown26

that the physical relevance of inversion in particular and division and differentation in27

general is remarkably broad, encompassing classical electromagnetism, a new relativis-28

tic quantum mechanics, and the physical structure, mutual interaction and apparent29

dimensionality of reality. A, perhaps unexpected, result is that the study of relativistic30

inversion leads to many of the major invariants of classical physics, some more usually31

thought to be in the quantum domain, and some new ones which may prove to be of32

service in the future.33

Relativistic algebras, such as any Dirac algebra , are not division algebras in that34

there are areas other than zero where division is not defined. Physically, such a property35

is required to properly parallel aspects of relativistic space-time. It is immediately36

obvious, for example, that inversion is necessarily undefined for a 4-vector v anywhere37

on the light cone: the inverse of any vector is another 4-vector which may be written as38

v−1 = v/v2. The denominator is zero on the light cone, and hence the inverse becomes39
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undefined. The Clifford algebra C̀ 1,3, often denoted the space-time algebra or just the40

STA for short, has been designed to parallel as closely as possible the nature of relativistic41

space-time [1–8]. It is that Clifford algebra with the Lorentz metric (+ − − −). Other42

authors have noted that, because C̀ 1,3 is isomorphic to the base elements of a particular43

Dirac algebra [2,9,10], another appropriate name for it is a Clifford-Dirac algebra and this44

name is also in current popular usage [11]. In this algebra there are many multivector45

combinations where division is undefined, and the denominators which may have zero46

values prove to be related to important invariants that govern the relativistic scaling of47

4-vectors and fields, among other things.48

In any event, even though the algebra is not a division algebra, it appears to be of49

utility, not only in describing spin- 1
2 [5,12] but also, for example, in describing aspects of50

physics such as the Maxwell equations [3,13,14]. In this context, the development leads51

not only to a description of the physics, which is comparable to that of other methods, but52

also to one that is in some respects more elegant. In particular, the formulation leads to53

all four Maxwell equations at once [2,4,8,13–17], rather than to the pair of inhomogenous54

equations for the field and the homogeneous equations for the dual field separately as is55

the case in the more usual textbook approach [18]. How can this be? How is it that an56

ill-behaved [11] non-division algebra can successfully describe wide areas of physics?57

In short, the physical reason is that the world observed in experiment does scale58

relativistically. The mass-energy of a particle as it approaches the limit of light-speed for59

example, tends to infinity. The quantities describing dynamics in Maxwell and Dirac60

theory are 4-vector differentials and contain an implicit inverse. For the description of61

dynamics within the algebra, however, the scaling of each component taken separately62

is precisely unity. It is not in the case of individual elements of the algebra, but in63

combinations of non-zero elements where division may scale or become undefined.64

In fact one may turn the perspective around, and say that, for properly relativistic65

algebras only quantities with this unit property may be important for a local description66

of dynamics - as they lead to possible unitary operators which conserve important67

quantities such as energy and momentum.68

Now one comes to the physical utility of inverses (and hence division) in this69

context. Division may seem familiar, and is so for simple numbers: the inverse of three70

is a third. What, physically, does inversion mean in the context of the inverse of space?71

time? space-time? space divided by time? space-time on the light-cone? If one can72

find an inverse at all, the product of this with its starting quantity leads, by definition,73

to a unit Lorentz scalar. It may be suspected, as indeed turns out to be the case, that74

finding such combinations may lead, in turn, to unitary processes which leads in turn75

to“allowed" and interesting dynamics. The extension of the unit relativistic vectors of76

space and time leads to a rich set of combinations of derived elements, corresponding to77

combinations of physical areas, volumes and a unit “point", as well as base lines, where78

division is undefined.79

The structure of this paper is as follows. For those unfamiliar with Dirac-Clifford80

algebras and their sub-algebras the essential properties are described [1–8,14]. Applying81

this to the physics of electromagnetism, the algebra is used to derive a general first order82

relativistic differential equation, encompassing field, mass, spin and potential [16]. The83

new equation has some similarities to the Dirac equation, but the mass, gauge and spin84

are treated as intrinsic elements on the same footing as the electromagnetic field. The85

field only case of the new equations is exactly the Maxwell equations. Returning to the86

mere mathematics, inverses are found for various quantities of importance, including the87

general case for the C̀ 1,3 algebra. It is shown that the areas where division is undefined88

correspond to null-hyperplanes which cut through the extended structure of the algebra.89

Returning once again to possible physical consequences, it is shown that many of these90

null-hyperplanes correspond to limiting cases of interest, such as the zero-length interval91

(null-vector) of space-time in Einstein’s special relativity, the corresponding case in92

energy-momentum and invariant quantities important in electromagnetism. Some of93
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these particular cases are discussed. The article concludes with the conjecture that the94

mathematics of relativistic inversion may be related to the physics of interaction.95

2. The Clifford-Dirac algebra96

Dirac developed his algebra in the first instance to pass to a linearisation of the
energy momentum Hamiltonian in relativistic quantum mechanics. Clifford algebras
have been used, through their geometric product over the basis vectors of space and time,
to represent the full range of boosts and non-commuting rotations between them. The
sub-algebra of the Dirac γ-matrix algebra (excluding γ5) is isomorphic to the Clifford
algebra C̀ 1,3. It is this real Clifford-Dirac algebra that we will use to investigate physical
inverses here. The subscripts 1 and 3 just refer to one unit element (identified with time)
of the 4-vector generator set squaring to the positive scalar and 3 elements (identified
with 3 directions in space) squaring to the negative scalar element. Note that though
the standard Dirac γ-matrices are a representation of this Clifford algebra, any specific
matrix representation is irrelevant to any of the arguments which follow. In this algebra
a contravariant 4-vector a may be written

a = γµaµ = γ0a0 + γ1a1 + γ2a2 + γ3a3 = γ0a0 + γiai = γ0a0 + a

 γ1
γ2
γ3

 (1)

with the aµ being real coefficients and the gammas time and three spatial unit vectors
respectively. The 0 index represents the temporal, and the 1, 2, 3 the right-handed triple of
spatial unit vectors in any well behaved orthonormal co-ordinate system. Such systems
may include spherical, cylindrical or toroidal co-ordinate systems, but for definiteness
here, the generators of the algebra are mapped onto unit Cartesian basis of Minkowski
space-time as

γ0 = ct̂, γ1 = x̂, γ2 = ŷ, γ3 = ẑ (2)

A 4-vector, containing the proper Clifford elements, is written in plain type. Bold type97

is used to denote a three component object, here the spatial part of a 4-vector. The98

column notation extracts the 3-vector part of the 4-vector, and allows one to keep track99

of the conventional 3-vector projections whilst maintaining a proper underlying 4-vector100

algebra. This will help to show why the physical universe may appear three-dimensional,101

while the underlying basis remains four-dimensional. Note that lower indices are used102

in the case of contravariant vectors, as this simplifies the notation for squared quantities.103

Greek indices run from 0 to 3. Latin indices run from 1 to 3.104

The 16 terms of the full ordered geometric product between two 4-vectors a and b
is defined as

ab = a ◦ b + a ∧ b (3)

the first part of which is the symmetric part and corresponds to the 4-vector scalar
product in the simple vector case:

a ◦ b =
1
2
(ab + ba) (4)

It is worth noting that in the present paper the symmetric part of the geometric product105

a ◦ b is denoted by a small circle in order to avoid any confusion with the dot product:106

x · y , the scalar or inner product between ordinary 3-vectors (denoted by boldface). It107

is crucial to understand that the symmetry or anti-symmetry of the product is not here108

related to the scalar. As will become clear, it is division, or more properly inversion, that109

may generate Lorentz scalar objects through products of extended general multi-vector110

distributions.111
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The second part of the product, the antisymmetric part, behaves in some respects
(at least between two vectors) like the usual Heaviside-Gibbs cross product of 3-space,
×, but is distinguished by the wedge symbol [4]:

a ∧ b =
1
2
(ab− ba) (5)

The anti-commutator of the basis vectors is

{γµ, γν} = γµν + γνµ = 2gµν11 , (6)

where the metric tensor gµν = gµν = diag(+ − − −) has the Lorentz metric,

γ2
0 = −γ2

i = 11 , i = {1 . . . 3} (7)

Where 11 is the unit scalar in the algebra. This should not be confused with the real112

number 1, which represents one unit of a quantity. Note that a convention γµγν = γµν is113

adopted, not only in an effort to keep the terms compact, but also to make explicit that114

these are new elements in a group of sixteen orthogonal elements [6].115

The square of a vector a gives precisely the Lorentz-invariant scalar product:116

a2 = γµaµγνaν = γ2
0a2

0 + γ2
1a2

1 + γ2
2a2

2 + γ2
3a2

3

= a2
0 − a2

1 − a2
2 − a2

3 (8)

For example, for the case where the magnitudes specify the location of a pair of events
in any given space-time frame, the proper invariant interval ds between them is:

(ds)2 = (dx0)
2 − (dx1)

2 − (dx2)
2 − (dx3)

2 (9)

where ds is positive-definite and time-like (γ0) for subluminal world lines, but goes to117

zero on the light-cone, where division is undefined.118

Starting with the unit basis elements γµ, using the antisymmetric product, Eq. (5),119

unit elements of higher grade can be formed. There are 6 independent terms of the form120

γµγν which we abbreviate with γµν, the bivector unit basis elements. In the space-time121

association, just as the γi form a basis for translations in Minkowski 4-space, the higher122

grade elements γi0 form the basis elements of boosts (Lorentz transformations) and123

the γjk the basis elements of rotations, with their proper non-commutative properties124

included [4,6,13]. Note that γµν = −γνµ for µ 6= ν; any exchange of adjacent indices gen-125

erates a factor of minus one. There are four independent trivectors (the pseudo 4-vector126

basis elements) of the form γλγµγν = γλµν, and a single independent quadrivector γ0123,127

the pseudoscalar. Together with the generator basis vectors γµ and the unit scalar γ2
0 = 11128

one has 16 linearly independent unit elements which, together with their counterparts129

with negative sign, form an algebraic group of 32 elements. The real algebra with this130

group requires only the positive 16 unit basis elements, because the minus sign may be131

absorbed in the real coefficients. So called multivectors can be formed using these ele-132

ments. This allows us to use the standard vector calculus notation and the Dirac algebra133

simultaneously. To many readers, this will appear to be helpful in recognising known134

physics even if geometric algebra is new to them. Let small letters refer to the nature135

of the basis element: scalar s, vector v (polar vector), bivector (boost b (polar vector)136

and rotor r (axial vector)), trivector t (pseudo vector or axial vector) and quadrivector q137

(pseudoscalar), then the most general multivector Ψ = s + v + b + r + t + q, containing138

all 16 basis elements, may be written as139

Ψ = 11s0 + γ0v0 +v

 γ1
γ2
γ3

+b

 γ10
γ20
γ30

+r

 γ23
γ31
γ12

+t

 γ023
γ031
γ012

+ γ123t0 + γ0123q0 (10)
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Bold letters are a triple of real number components. These real components may aquire140

physical dimension when used to describe physics, though this is irrelevant to the141

mathematical results. In this way the gamma components may be kept dimensionless,142

by definition. It is the real factor that may be used to carry the units of space and143

time, field and spin in what follows. For example the commuting real number triple144

of components b = (b1, b2, b3) is such that b = bγi0 = γi0b = b1γ10 + b2γ20 + b3γ30,145

where the bi are real number components ( or momentum or field strength components146

etc.), some or all of which may be zero. The linearly independent multivector elements147

are carried by the γ components, which are written in column form to emphasise148

that the full relativistic algebra has four linearly independent three-component bases,149

with different commutation, multiplication and division properties to each other. In150

elementary texts these four groups of three are often projected onto one another and/or151

onto 3-dimensional vectors. Such projections have caused much confusion in the past152

[3,4,6]. A discussion of the nature of these 4 3-spaces will be resumed after making153

connections with the Maxwell equations and relativistic quantum mechanics below.154

Proper elements with naturally just one component are distingushed with the suffix155

“0". Explicitly these are the scalar element s0, the temporal element v0, the spatial tri-156

vector element t0 and the dual quadri-vector element q0. All elements have magnitudes157

given by real numbers - the proper Clifford-Dirac element being given explicitly in158

the column-vector or unit element in the definition of Eq. (10). The advantage of the159

3-component column vector notation is that it makes explicit the four 3-spaces, that160

of the basis vector set and the other three derived as products or quotients. Also it161

allows a connection to the other linearly independent sets of three component objects.162

This aids the connection between the 4-dimensional and the historical Heaviside-Gibbs163

3-vector algebra notation, as will become apparent in the next section. By keeping164

the unit basis elements explicit, we not only allow for distinction of the grade of a165

multivector component, but also find these distinctions to be of value in the classification166

of inverses. As mentioned before, lower case letters will be used for mere mathematics,167

where physics is discussed upper case letters will be introduced.168

A short calculation shows that γ2
0 = γ2

i0 = γ2
123 = +11, γ2

i = γ2
ij = γ2

0ij =169

γ2
0123 = −11. The sixteen element set generated from the basis γµ on the Lorentz metric170

(+ − − −) forms a “geometric" Dirac algebra, the Clifford algebra of space-time C̀ 1,3.171

The inversion of these unit elements is always defined. Individual inverted elements172

have the same nature and the same magnitude but may change sign and hence reverse173

“direction". A major advantage of the algebra is that one need not carry both co- and174

contra-variant basis vectors as multiplication and division keeps track of the proper175

signs in differential equations, products and quotients. Multi-vectors with more than one176

non-zero component may also scale in magnitude under inversion, as will be discussed177

in detail in what follows. Of the 10 elements which square to −11, not one commutes178

with all other elements, that is, none behave like the complex number i =
√
−1. There179

is no γ5 unless one explicitly adds the unit imaginary. That is, the Dirac γ-matrices are180

representations of the group that forms the basis for the Clifford algebra of spacetime181

C̀ 1,3 [1,5,6,9], but the Dirac matrix algebra M4(C/ ) (the algebra of complex 4× 4 matri-182

ces) is the complexification of both the spacetime algebra: C/ ⊗ C̀ 1,3 ' M4(C/ ) and the183

Majorana algebra C/ ⊗ C̀ 3,1 ' M4(C/ ) [6]. For the even subalgebra {11, γi0, γjk, γ0123},184

the quadrivector γ0123 takes the role of the unit imaginary number
√
−1 because it com-185

mutes with all the even elements. As mentioned above the full algebra has important186

self-contained sub algebras. Explicitly the subset {11, γ0123} is isomorphic to the complex187

algebra and the subset {11, γ23, γ31, γ12} is isomorphic to the quaternion algebra. It is no188

accident that these subsets of the full relativistic algebra have been used successfully to189

describe non-relativistic physics for more than a century. In contrast to projections onto190

3-dimensional spaces, physics described within these subsets does not compromise the191

underlying 4-dimensional form.192
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3. On the inversion of space and time: frequencies and differentials193

For the quotients γµ = 1/γµ, which correspond to the covariant basis vectors, we
have

γ0 = γ0, γi = −γi (11)

As a consequence of the quotient, the vector differential operator has opposite space sign194

to the vector:195

d =
∂

γµ∂xµ
= γ0∂0 − γ1∂1 − γ2∂2 − γ3∂3 = γ0∂0 −∇

 γ1
γ2
γ3

 (12)

Note that a proper differential contains implicitly an inversion of the basis elements. A196

differential is anyway a special kind of division: in the vector differential these are a197

sum of a divisions by an infinitesimal time or (each of three perpendicular directions)198

of space. Clearly, the operation of this differential operator d on some multivector Ψ199

therefore results in a change of grade. Note that though the metric has been inserted as200

an axiom, derived from careful experimentation on reality, it is perhaps better explained201

in terms of the inversion of the base unit elements, taken separately. The algebra C̀ 1,3202

is such that the inverse of the unit temporal element is the unit temporal element. The203

inverse of each of the three spatial unit vectors is the negative of that unit vector as in204

Eq. (11) above. In describing dynamics, then, one can make do with a single direction of205

time (or frequency), but one needs to have two directions in all three spatial directions,206

as any inverse, or differential, generates such vectors.207

Consider the inversion of time, measured in seconds. This is frequency, measured in208

Hertz. One may imagine that one lives “in" time, and that time is that which is measured209

by clocks. Think though: the ticking of a clock is really a frequency. The fundamental210

quantisation rules and conserved quantities are more in terms of frequency than time.211

Quantum energy is Planck’s constant times frequency E = h f . The stability of (e.g212

atomic) clocks is down to the absolute nature of the conservation of energy, not to any213

underlying grid of time. It is energy, not time, that is absolutely conserved. Likewise,214

marked on a ruler are ticks denoting space, but those ticks may be seen as the peaks215

of a spatial wave delineating a spatial frequency. If one measures the width of a road,216

using a metre stick for example, one divides the width of the road by the stick to get217

the number of metres. One could call the metre stick, or any other ruler, in this sense a218

dividing stick. Now there is, of course a symmetry between an object and its inverse.219

If that symmetry were perfect, and one were trapped in one or the other, would it be220

possible to determine whether one lived in time or frequency space? Luckily, we do not221

need to make the choice, because inversion will prove an essential part of the dynamics222

in the arguments to follow. It is certainly an integral part of the mathematics we use to223

describe dynamics in differential equations. Existing in either space and time alone or224

inverse space and inverse time alone would be void of dynamics, at least that dynamics225

described by differential equations. Such a world would be rigid with no motion of any226

kind, let alone the ability to think about it. Necessarily we live in both space and time227

and inverse space and inverse time. The latter pair are in the realm of quantisation, and228

the former in freedom to move forwards and backwards in space, if not in time.229

4. A physical application: the Extended Maxwell equations230

Let us move from the mathematical and the philosophical to a concrete physical231

example. Consider some relativistic, coherent, harmonic, self-repeating multivector232

wave-function Ψ representing an elementary particle or exitation, that maps immediately233

to itself after a single spatial and temporal step involving a π
2 change of phase. It has234

been argued in earlier work that merely complex two component wave-functions are235

not complex enough to properly represent a fully relativistic wave function, but that one236

needs at least 4 components with a phase-harmony [16], and that the present algebra is237
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perfect for this task. One may anyway describe the dynamics as a fundamental process238

P such that PΨ→ Ψ. Alternatively one may consider constraints on allowed changes239

using a differential equation such that dΨ = 0, expressing that the net result of the240

internal changes is balanced so that there is no net change of the initial wave-function241

in that first order process. Both describe the same physical process of an isolated state242

continuously re-forming itself in a coherent wave. The differential equation approach is243

the traditional way in which dynamics is described, and it is that route which will be244

followed in the first instance. The second will be returned to later in the discussion on245

interaction.246

The simplest case of dΨ = 0 for the complete multivector set is an extended set of247

eight coupled first order differential equations the first four of which parallel exactly248

the Maxwell equations in the rest-massless case. This has been discussed extensively249

in earlier work [14–16], but sufficient detail will be given here to be able to understand250

what it means in the inversion of an extended field distribution in the sections below.251

To make a connection between the mathematics and the physics, let the 4-vector252

be taken to describe the 4-vector potential in the first instance, as this corresponds most253

closely with the description in elementary textbooks [18].254

Starting with a vector 4-potential A(x) defined over all space-time x the vector
differential yields elements of the electromagnetic field. How that plays out and is
connected to the Maxwell equations is discussed briefly. In what follows natural units
are used, ε0, h̄ and c are set equal to unity. Let the 4-potential be A = (A0(t, x), A(t, x))
with A0 the scalar potential and A the vector potential. In accordance with the previous
section:

A = γµ Aµ = γ0 A0 + A

 γ1
γ2
γ3

 (13)

The 4-derivative is dA = d ◦ A + d ∧ A. It turns out that the patterns of terms in the full255

4-space algebra are similar to those in the 3-space algebra. This means that the end result256

may be written in terms of the familiar 3-space forms, such as A, the electric field E257

and magnetic field B, and the standard dot and cross product, whilst the full geometric258

algebra is maintained by means of the positional column notation introduced above for259

the proper components. With these conventions, the 16 (= 1 + 3 + 3 · 2 + 3 · 2) terms of260

the full product dA may be written as261

dA = 11(∂0 A0 +∇ · A)−

 γ10
γ20
γ30

(∂0 A +∇A0)−

 γ23
γ31
γ12

∇× A (14)

which is the sum of a scalar part S and a bivector part F, so we can write dA = S + F,
with

S = d ◦ A = 11(∂0 A0 +∇ · A) (15)

Note that the quantities associated with the gradient and curl here map to two distinct,262

linearly independent bi-vector spaces, electric field space and magnetic field space, de-263

noted by the column vectors in the full 4-dimensional algebra. The scalar S is intimately264

related to the usual gauge, as will become clear, though here a second gauge, related to265

the dual scalar, may also be present. Setting S = 0 (for all coordinates) corresponds to266

the Lorenz gauge condition.267

In Eq. (14) we can identify, in the usual way, the electric field E = −∂0 A−∇A0 and268

the magnetic field B = ∇× A, where the sign convention is that of Jackson [18]. Together269

these terms form a six-component object known as the Riemann-Silberstein vector which270
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we denote by F. This corresponds to the antisymmetric Faraday or field-strength tensor271

Fµν [18], but here it takes the spinor form [19,20]:272

F =

 γ10
γ20
γ30

E−

 γ23
γ31
γ12

B =

 γ10
γ20
γ30

(E + γ0123B) (16)

In Eq. (16) the electric and magnetic fields have a bivector form, a boost γi0 and a rotor273

γij respectively, rather than appearing as a set of tensor components. Since the vector274

has been defined as proper 4-vector from the start, as has the 4-vector derivative, the275

fields here transform as do the fields in the simpler tensor formalism. This is as has276

been discussed in earlier work [13,16], and as should be expected for an intrinsically277

relativistic algebra. The proper relativistic transformations are also, of course, an essential278

part of the inversion of complex distributed multi-vectors. An extension to invariants279

and relativistic scaling to completely general multi-term multi-vectors involving the280

tri-vector (spin) and mass and dual mass terms will be derived in the sections to follow.281

The physical assignation of the vector and bi-vector terms has been discussed, but282

what of the other three, the scalar, tri-vector and quadri-vector? In earlier work, in line283

with their relativistic transformation properties, we have related these to root-mass,284

intrinsic spin and dual root mass respectively [16]. Here, we will use the initial capitals285

of their multi-vector form, S for the scalar, Q for the quadrivector and T for the trivector286

components. Explicitly we may define a physical field, root-mass, intrinsic spin and287

dual root-mass multivector as:288

Ψ = 11S + γ0 A0 +A

 γ1
γ2
γ3

+E

 γ10
γ20
γ30

−B

 γ23
γ31
γ12

+T

 γ023
γ031
γ012

+ γ123T0 + γ0123Q (17)

As in Eq. (14), Eq. (12) acting on Eq. (10) one may form a general set of first order289

equations for a non-interacting multivector field in free space as dΨ = 0. This may be290

expanded in terms of the full 4-space products, and terms may be gathered in the 3-space291

quantities to give292

dΨ = γ0(+∇ · E + ∂0S) +

γ123(+∇ · B + ∂0Q) + γ1
γ2
γ3

(−∂0E−∇S +∇× B) +

 γ023
γ031
γ012

(−∂0B−∇Q−∇× E) +

11(+∇ · A + ∂0 A0) + γ10
γ20
γ30

(−∂0 A− ∇A0 −∇× T) +

 γ23
γ31
γ12

(+∂0T +∇T0 −∇× A) +

γ0123(+∇ · T + ∂0T0) = 0G (18)

Here the unit elements have been placed to left to keep them out of the way. This has no293

consequence as they commute with the expression to their right. The magnitudes may294

be unified by taking square root rest mass, energy or probability density. The first four295
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equations are the extended Maxwell equations, including root mass (S) and possible296

dual root rest mass (Q) terms. If one considers the rest-massless and spinless case where297

all terms except the field are zero, i.e Ψ = F, then only the first four equations apply and298

S and Q are zero then, by inspection, dF = 0 is exactly the full set of Maxwell equations,299

though with the proper multivector form of the equations within the algebra explicit.300

It should be noted that, although the conventional approach has been followed301

here in associating the 4-vector with a 4-vector potential, it is equally possible to derive302

the physical electromagnetic fields from the 4-trivector potential T. This allows one to303

associate the field with the physical spin, rather than the field with a non-physical vector304

potential. This approach would also have the distinct advantage that the 4-vector would305

be left free to describe a physical 4-current. In previous work [21] it has been shown that306

the quantised charge could be derived in terms of the quantised angular momentum,307

or vice-versa within a simple semi-classical model of the electron as a self-localised308

photon. The relativistic quantum theory discussed above has shown solutions with non-309

trivial toroidal topology which are necessarily charged [16] which fit seamlessly with310

the earlier semi-classical model, while providing a mechanism for the self-confinement311

of the electron charge.312

5. On invariants, inversion and the hyperplanes where division is not defined313

Let us now pass to the main purpose of this paper, a consideration of where and314

how division is, and is not, defined within the relativistic Clifford-Dirac algebra defined315

above. The mutual inverse of an object Ψ within the algebra is defined as that thing316

Ψ−1 required to multiply to the unit scalar element 11, such that ΨΨ−1 = 11. This allows317

the identification of those special multivectors Ψ where a “multiplicative division" or318

inverse does not exist, and hence where division is not defined [11]. It turns out that319

inversions hinge upon finding (Lorentz) scalar invariants in the divisor. Some of these320

invariants, such as the invariant interval and invariant mass-energy are very familiar.321

Others are new, but may also have direct bearing on the constraints of physical systems322

imposed by the nature of the underlying physics of space and time.323

In many algebras, including the real, the complex and the quaternion algebras,324

zero is the only element which has no inverse. Here there are many more combinations325

for which an inverse does not exist. These are referred to as null-hyperplanes, since326

they correspond to objects of zero length, a so-called null-vector (such as a Riemann-327

Silberstein vector for the electromagnetic field), as also proposed by Kramers [19] and328

Weyl [10]. We first discuss some specific familiar cases and then go on to present a329

general form for the inverse.330

First consider the 4-vector case:

Ψ = v = γ0v0 +

 γ1
γ2
γ3

v = γ0v0 + γ1v1 + γ2v2 + γ3v3 (19)

Ψ−1 = v/v2 = v/(v2
0 − v2) =

Ψ
v2

0 − v2
= Ψ/τ2 (20)

An inverse vector maps to a vector in the same direction for a timelike interval and a331

vector in the opposite direction for a spacelike interval, such as the unit spatial elements332

themselves. Note, for the case of the space-time coordinates v0 = ct and v = x, the333

divisor corresponds to the invariant interval squared τ2 and that all inverses are scaled334

precisely relativistically according to this interval, as they should be. The scaling is335

unitary for any multivectors with a single component, such as the unit vector elements336

themselves. In particular in the vector differential operator of Eq. (12) there is unitary337

scaling since the implied divisions are taken with respect to each unit element separately.338

In this special case division is not only always defined, but the resulting operator339

is unitary in each and every frame. There appears to be a connection between the340
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proper nature of division, the scalar invariants engendered by this process and allowed341

dynamical process in nature, well-described by the unitary vector differential operators342

of the Dirac, Maxwell and in the extended Maxwell equations above.343

On the lightcone the interval goes to zero, and there is no inverse if v2
0− v2 = 0. That344

is the plane where division is undefined corresponds exactly to the physical limitations345

imposed by the speed of light: all intervals at lightspeed are zero. There are, of course,346

many interesting invariants with the vector form. For example the corresponding347

invariant in the case of the 4-vector potential is a charge invariant [22].348

Consider further the combination of a scalar and a Lorentz boost:349

Ψ = s + b = 11s0 + γ10b1 + γ20b2 + γ30b3 (21)

Ψ−1 = (s− b)/(s2
0 − b2) (22)

This is the form for the energy and momentum density in the field, in which case350

the divisor corresponds to an invariant mass m0. This has no inverse if s2
0 − b2 = 0351

and corresponds to the lightcone as well. The divisor is a true scalar in the algebra352

and, as such, is invariant under a Lorentz transformation, a property shared with the353

pseudoscalar, which will appear in some of the more general cases which follow. Note354

the distinctions between the proper multi-vector form and the component form, for355

example s = 11s0 and q = γ0123q0. Note that the inverse vector is another vector in the356

same direction whereas in the case of scalar plus boost the inverse acquires a minus sign357

in the spatial component.358

It is possible to extend the vector null-hyperplane to include the scalar and the359

pseudoscalar as well:360

Ψ = s + v + q (23)

Ψ−1 = (s− v− q)/(11s2
0 − v2

0 + v2 + q2
0) (24)

This has no inverse if v2
0 − v2 = s2

0 + q2
0. In the context of electromagnetism it contains361

the gauge term (scalar) as well as the quadrivector (the dual of the gauge). We see that362

the addition of a gauge field shifts the null-multi-vectors off the lightcone. This has363

applications in the description of massive, rather than massless systems [16,17].364

The combination with all the elements that square to +1 also has a null-hyperplane:365

Ψ = s + γ0v0 + b + γ123t0 (25)

Ψ−1 = (s− γ0v0 − b− γ123t0)/(s2
0 − v2

0 − b2 − t2
0) (26)

There is no inverse, for example, if s2
0 − b2 = v2

0 + t2
0. Multivectors with all elements366

squaring to +1 will prove essential in the derivation of a completely general inverse as367

will be shown by the end of this section.368

Consider the following:369

Ψ = 11s0 + γ0v0 + γ123t0 + γ0123q0 (27)

Ψ−1 =
s0 − γ0v0 − γ123t0 − γ0123q0

s2
0 − v2

0 − t2
0 + q2

0
(28)

This has no inverse if s2
0 + q2

0 = v2
0 + t2

0, and connects all the single element “time like"370

parts of the algebra. Dynamics over this set would imply an interaction between time371

and the gauge fields, which, it may be speculated, could lead to extra quantisation372

conditions on any full set of interacting fields [21].373

In view of the previous examples, it is now clear that the following formula helps
in finding Ψ−1 in many (simple) cases:

Ψ−1 ' Ψ�/(s2
0 − v2

0 + v2 − b2 + r2 + t2 − t2
0 + q2

0) (29)
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Here we have defined the “diamond” conjugate of a multivector Φ as374

Φ� = 2Φs −Φ (30)

where Φs is the scalar part of Φ. This conjugate reverses the sign of all “directed"375

elements of a multivector, that is all elements except the scalar. Note that376

ΨΨ� = s2
0 − v2

0 + v2 − b2 + r2 + t2 − t2
0 + q2

0 + 2γ0r · t

+ 2

 γ1
γ2
γ3

(t0r− b× t)− 2

 γ10
γ20
γ30

(q0r + v× t)

− 2

 γ23
γ31
γ12

(v0t− t0v− q0b)− 2

 γ023
γ031
γ012

(v0r + v× b)

− 2γ123v · r + 2γ0123b · r (31)

The method of finding the inverse by using Eq. (29) is guaranteed only if ΨΨ� is a scalar,377

so that Ψ−1 = Ψ�/ΨΨ�. It can, however, also be used iteratively on ΨΨ� etc. To make378

clear a possible connection with the physics here we calculate the inverse in terms of the379

quantities used for the field quantities in the section on the extended Maxwell equations,380

S = s, F = b + r, F† = b − r with b = E and r = −B. Note again the relationship381

between b and b see also Eqs. (15) and (16). For the complete even subgroup, and using382

the example of the physical square-root mass S and the electromagnetic field F leads to:383

Ψ = s + b + r + q = S + F + Q (32)

Ψ−1 =
(S + F† −Q)(S− F† −Q)(S− F + Q)

(S2 + E2 + B2 + Q2
0)

2 − 4[(SE + Q0B)2 + (E× B)2]
(33)

=
(S− F + Q)[S2 − E2 + B2 −Q2

0 + 2γ0123(Q0S− E · B)]
(S2 − E2 + B2 −Q2

0)
2 + 4(Q0S− E · B)2

(34)

The invariant divisor in Eq. (34) brings out an important invariant in electromagnetism384

[12], which will be returned to later.385

If Ψ is a multivector, Ψ† corresponds to its Hermitian conjugate Ψ† = γ0Ψ̃γ0, where386

Ψ̃ is the reversed ordering of all multivector components of Ψ. The † operation reverses387

the sign of all basis elements of the algebra which square to −1, so that in the product388

ΨΨ† all “oscillating” terms (those squaring to −11, and hence able to describe oscillations389

in multi-vector wavefunctions [16]) are quenched.390

ΨΨ† = s2
0 + v2

0 + v2 + b2 + r2 + t2 + t2
0 + q2

0

+ 2γ0(s0v0 + r · t + t0q0 − v · b)

+ 2

 γ10
γ20
γ30

(s0b− q0r− v× t + v0v + t0t− b× r)

+ 2γ123(s0t0 − v · r− v0q0 − b · t) (35)

Note that ΨΨ† contains no more than just the six multivector components that square391

to +1, and this appears to be a good starting point for further reduction to a scalar (real392

number). Using the process ΨΨ† and Eq. (25) and Eq. (26) the general case of the inverse393

of Ψ follows as394

Ψ−1 =
Ψ†(2〈ΨΨ†〉s −ΨΨ†)

ΨΨ†(2〈ΨΨ†〉s −ΨΨ†)
=

Ψ†(ΨΨ†)�

ΨΨ†(ΨΨ†)�
=

Ψ†Φ�

ΦΦ�
(36)
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where the expression in the denominator is always a true (Lorentz) scalar. The deriva-395

tion of the general inverse to any multivector in this algebra is the main result of this396

paper. Here, Φ ≡ ΨΨ† and we have used Eq. (30). Note that, in the general case, the397

denominator has a fourth power character. In many simpler cases a second power398

suffices.399

Note also that400

(ΨΨ†)−1 = Φ−1 =
Φ�

ΦΦ�
(37)

and that Ψ−1 and Φ−1 have the same null-hyperplanes. Note also that Φ† = (ΨΨ†)† =401

ΨΨ† = Φ and the product ΦΦ� = Φ�Φ is an invariant scalar. This invariant scalar can402

be expressed in terms of the components of Ψ:403

ΦΦ� = (s2
0 + v2

0 + v2 + b2 + r2 + t2 + t2
0 + q2

0)
2

− 4(s0v0 + r · t + t0q0 − v · b)2

− 4(s0b− q0r− v× t + v0v + t0t− b× r)2

− 4(s0t0 − v · r− v0q0 − b · t)2 (38)

Hence404

ΦΦ� ≡ 〈ΨΨ†〉2s − 4N2
� = (〈ΨΨ†〉s + 2N�)(〈ΨΨ†〉s − 2N�) (39)

where the positive scalar N2
� is defined as405

N2
� = (s0v0 + r · t)2 + (t0q0 − v · b)2 + (s0t0 − v · r)2 + (v0q0 + b · t)2

+ (s0b− q0r− v× t)2 + (v0v + t0t− b× r)2 (40)

The second important new result of this paper is that, for the general case, all null-406

hyperplanes are given by 〈ΨΨ†〉2s = 4N2
� and that ΦΦ� is the difference of two positive407

definite scalars which represents a general invariant in this formulation. The poten-408

tial utility of this is to generate the proper set of Lagrangians appropriate to further409

development of the physics.410

As an example of the connection between inversion and invariants take Ψ =411

s + b + r + q, then412

1
2

ΨΨ† =
1
2
(s2

0 + b2 + r2 + q2
0) +

 γ10
γ20
γ30

(s0b− q0r− b× r) (41)

and413

1
4

ΦΦ� =
1
4
(s2

0 + b2 + r2 + q2
0)

2 − (s0b− q0r)2 − (b× r)2

=
1
4
(s2

0 − b2 + r2 − q2
0)

2 + (s0q0 + b · r)2 (42)

If we substitute s0 = q0 = 0 and b = E and r = −B and hence Ψ = F, we find:414

1
4

ΦΦ� =
1
4
(E2 + B2)2 − (E× B)2 = u2 − |S|2 =

1
4

FF†F†F (43)

=
1
4
(E2 − B2)2 + (E · B)2 =

1
4

F2F†2 (44)
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the first line representing the density and flow of electromagnetic energy and in the415

second line both terms are Lorentz invariants, where the first term is itself the square of416

the Lagrangian density of the free electromagnetic field. Hence we should perhaps try:417

L2 ≡ 1
4

ΦΦ� =
1
4
〈ΨΨ†〉2s − N2

� = uφ2 − 1
4

φ4 = u2 −V2 (45)

In any case, when our Ψ’s are representing fields then 1
4 ΦΦ� ∼ u2

0 corresponds to an418

invariant energy or mass density squared.419

6. The relation between inversion, dynamics and invariance420

It is striking that the set of divisors which may go to zero are related to the appropri-421

ate invariants, the 4-vector position to the invariant interval and the 4-momentum to the422

invariant mass. It would seem that, while the dynamics is well described by elementary423

unitary inversions, the combinations where division - and hence inversion - becomes424

undefined are those with important invariants and important physical limits.425

Earlier, it has been argued that the way in which the inverse vector scales as the426

lightcone is approached is just the way space and time scale in special relativity, with427

division being undefined on the lightcone itself. The scaling of inverses reflects, and in a428

real sense underlies, the scalings familiar from special relativity. In particular note that429

the divisors, in the most general case, correspond to important physical invariants or430

their squares. For example, for the case of field alone corresponding to electromagnetism,431

these are the base invariants of electromagnetism E2 − B2 and E · B.432

It has been shown above that the non-definition of division everywhere is no433

impediment to the development of a powerful vector differential algebra. Indeed, the434

subtlety and beauty of the interactions between the non-commuting basis elements435

and the 4-vector derivative encompasses the Maxwell equations and in some respects436

extends the study of relativistic quantum mechanics. We now try to shed some light on437

how and why the vector differential Eq. (12) should prove so potent in the description of438

that subset of reality described by the Maxwell equations.439

Consider the field product ΨΨ† for Ψ = F440

1
2

FF† = 11
1
2
(E2 + B2) +

 γ10
γ20
γ30

(E× B) (46)

The scalar part represents the energy density of the electromagnetic field and the bivector441

part the Poynting vector, which represents an electromagnetic momentum density. As442

has been discussed in the previous section, this combination has a null-hyperplane443

which behaves similarly in many respects to that of the vector. To see this consider the444

case of Eq. (21) for Ψ = s + b which has divisor s2
0 − b2. The divisor here corresponds to445

the invariant mass density, and is undefined in the case of a zero mass density. Since446

(rest) massless particles and fields are lightspeed this again corresponds to the lightcone.447

The scalar plus bivector combination is not a 4-vector, but its divisor scales in the same448

way as that of a 4-vector under Lorentz transformations. Taking a time derivative of this449

form yields a true 4-vector if taken with respect to the local particle “clock". It can also450

be transformed into a true 4-vector by multiplying by a unit vector in the time direction.451

It needs to be realised, however, that this is a frame dependent operation.452

Using the general formula, it is possible to find the following simple cases which453

include the spin source and spatial bivector:454

Ψ = γ0v0 + r + γ123t0 + q (47)

Ψ−1 =
(γ0v0 + r + γ123t0 − q)
(v2

0 + t2
0 + r2 − q2

0)
(48)
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and the simple case455

Ψ = s + r (49)

Ψ−1 = (s− r)/(s2
0 + r2) (50)

This would have no inverse if s2
0 + r2 = 0, which would imply s2

0 = 0 and r2 = 0, so Ψ456

would be zero anyway. This means that there is no null-hyperplane in this case, and457

hence division is defined for all combinations of such elements except zero itself. This458

special combination, which forms a sub-group within the algebra, is isomorphic to the459

quaternions which themselves form a division ring. Physically this means that processes460

of a rotational nature are unrestricted, unitary and have no limit. Physically, one may go461

round and round as much as one wishes, both in the mathematics and in reality, without462

having to scale or to transform through the scalar.463

Also note the following cases464

Ψ = b + q (51)

Ψ−1 = (b− q)/(b2 + q2
0) (52)

and465

Ψ = γ0v0 +

 γ023
γ031
γ012

t (53)

Ψ−1 = (γ0v0 −

 γ023
γ031
γ012

t)/(v2
0 + t2) (54)

for which division is always defined.466

As a further example of the physical utility of these null-hyperplanes within the467

Clifford-Dirac algebra, it is instructive to consider the “null vectors” of Kramers [19], in468

particular the Riemann-Silberstein vector. For these we have F2 = 0, c.f. Eq. (33):469

FF = F2 = E2 − B2 + 2γ0123E · B (55)

This requires E2 = B2 and E ⊥ B, corresponding to the free electromagnetic wave and it470

corresponds to the case where there is no inverse for471

Ψ−1 = FF†F†/((E2 − B2)2 + 4(E · B)2) (56)

Again, the null-vector of Eq. (55) appears as a divisor. In each of the cases above it would472

seem that the physics is constrained by the existence of each of these null-hyperplanes,473

and conversely, that the investigation of the corresponding invariant divisors may throw474

further light on the physics.475

Another null-hyperplane of potential physical importance is that with respect to476

the scalar, the tri-vector and the pseudoscalar:477

Ψ = s + t + q (57)

Ψ−1 = (s− t− q)/(s2
0 − t2

0 + t2 + q2
0) (58)

which is precisely analogous to the case of the vector, scalar and the pseudoscalar of478

Eq. (23). The tri-vector quantities here represent a product of a momentum density, with479

a perpendicular vector. This is analogous to an intrinsic angular momentum density480

[14,16]. The invariants in the divisor here may therefore prove important in the physical481

description of the quantum mechanical spin.482
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Given the general result, the Lorentz invariant scalar quantity ΦΦ� may be inter-483

preted as being related to some effective square-root invariant (or rest) mass µ0 such484

that:485

4µ4
0 ≡ ΦΦ� = 〈ΨΨ†〉2s − 4N2

� = 4µ4 − 4N2
� (59)

and where the scalar 〈ΨΨ†〉s = 2µ2 then takes the role of the square of the total mass486

µ or, equivalently, the square of the total energy of the system. In this picture, the rest487

mass µ0 is not static, but arises from any internal force balance and dynamics of Ψ. Note488

that the effective rest mass µ0 = (ΦΦ�/4)1/4 of light speed objects is zero and that it is489

real for sub-luminal objects (and imaginary for super-luminal objects).490

We can get some idea of the meaning of Eq. (59) by looking at the simple example491

Ψ = s + b so that ΦΦ� = (s2
0 + b2)2 − 4(s0b)2 = (s2

0 − b2)2 = 4µ4
0 and where 2µ2 =492

〈ΨΨ†〉s = s2
0 + b2. This implies that µ2

0 = µ2 − b2 which, as expected, corresponds to493

m2
0c4 = m2c4 − p2c2 with c = 1, m = µ and p2 = b2.494

We may also write:495

4µ4
0 ≡ 〈ΨΨ†〉2s − 4N2

� = 2〈ΨΨ†〉sΨΨ† − (ΨΨ†)2 (60)

where in a simplified case ΨΨ† may be interpreted to be equivalent to the square of496

some field φφ∗ = |φ|2:497

µ4
0 =

1
2
〈ΨΨ†〉sΨΨ† − 1

4
(ΨΨ†)2 = µ2|φ|2 − λ|φ|4, with λ =

1
4

(61)

This means that the rest mass of a particle may be related to an effective scalar potential498

µ4
0 = V(φ) which depends on a field φ and a (square-root) mass µ. A potential of quartic499

form may take the form of a Mexican hat. This is similar in form to that needed for500

spontaneous symmetry breaking in the Higgs mechanism, for example, such that the501

ground-state level of the energy, and hence its associated mass, are non-zero. Inter-502

estingly the field φ does not need to be merely scalar itself, as long as |φ|2 = ΨΨ† is503

scalar, but that simply means that ΨΨ† = 〈ΨΨ†〉s and that Ψ may only contain any504

single element or a selection of more elements such as {s0, r} but at maximum only five505

components, given by {s0, v, q0} or {s0, t, q0} or {v0, b, t0} or {v0, r, t0}.506

In the preceding, we have started with a Dirac algebra and have looked for inverses
whose product yielded a simple scalar. In a sense, this is the reverse process to that
followed by Dirac. He started with a square root scalar operator and was forced to
introduce what is now known as a Dirac algebra to linearise it. Introducing the scalar
operator H, the classical relativistic Hamiltonian and demanding it be linear in the
components of the momentum p1, p2 and p3 we obtain:

H/c =
√

m2c2 + p2 = γ0mc + γ10 p1 + γ20 p2 + γ30 p3 (62)

Together with the energy p0, this led to his relativistic quantum mechanical operator
equation

(p0 + (aγ0 + bγ123)mc + γ10 p1 + γ20 p2 + γ30 p3)|Ψ〉 = 0, (a2 + b2 = 1) (63)

Note that the resulting operator contains only the basis elements that square to +1.507

Hence, by demanding this equation to be roughly equivalent to the classical scalar508

equation, Dirac obtained his non-commutative algebra. Originally, the notation αi = γi0509

and αm = γ0 was used. Squaring the original relativistic equation that contains the510

classical Hamiltonian appears to be equivalent to the multiplication of the linearized511

equation Eq. (63) with the conjugate operator p0 − γ0mc− γ10 p1 − γ20 p2 − γ30 p3.512

In the context of the previous section this operator is recognized as the “diamond"513

conjugate of the linear operator in Eq. (63). Denote the multivectors with elements514
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squaring to plus one, Φ, which have the property Φ† = Φ. These appear to play a central515

role within the algebra: the same pair of conjugate multivectors Φ and Φ� are essential516

both in forming the Dirac linear operator as well as in properly defining division and517

finding inverses within the space-time algebra.518

In the context of the Dirac equation, the Dirac algebra has proven successful in de-519

scribing, amongst many other things, half integral spin and the existence of the positron.520

It has been developed to be consistent with special relativity: invariant for scalars (s),521

covariant for vectors and tri-vectors (v, t), and with the proper transformations of the522

fields (r, b), and, of course, it is all of these things. Any relativistic algebra must necessar-523

ily contain a proper description, at the very least, of connections on the light cone with524

invariant interval zero. Comparing Eq. (63) with Eq. (25) and Eq. (26), one observes that525

all the terms squaring to positive unity are represented, except one, that corresponding526

to the directed volume element γ123. The Dirac equation properly describes the half-527

integral spin, but says nothing about the charge, though Dirac tried to remedy this in528

later work [22]. The present authors have also made progress in trying to make this529

link using variants of Eq. 18, where the mass is introduced in a more sophisticated way530

[15,16,21]. The relationship of γ123 to the angular momentum density is the same as that531

of the charge to the current density. In his paper on “A new classical theory of electrons",532

Dirac concluded [22]. “To make this passage one will presumably have to replace the533

square root in the Hamiltonian with something involving spin variables. This may be534

a difficult problem, but one can hope that its solution will lead to the quantization of535

electric charge and will fix e in terms of h." The present process seems to provide a non-536

arbitrary technique for deciding which terms should appear in an extended dynamical537

theory. In particular the term in γ123 seems a prime candidate for an attempt to make538

further progress along the path followed by Dirac.539

7. On the perceived dimensionality of reality540

The Maxwell equations were first derived in a world-view which was wholly541

3-dimensional. In the twentieth century it became clear that the universe is more542

complicated than that, and 4-dimensional space-time was introduced. Despite this,543

during the twentieth century, the Maxwell equations have remained of value in science544

and engineering and the electric field has remained a three-component object. The545

magnetic field likewise. It remains, however that the electric (or magnetic) field is not a546

vector. They do not have the proper number of components for a 4-vector, and never did.547

Neither 6 nor 3 equals 4! The field elements do not transform in the same way as those548

of a vector. Both are relativistically part of the same six-component electromagnetic549

field, described by a six component anti-symmetric tensor in the standard formalism. In550

different inertial frames, one persons electric field is anothers magnetic, and vice-versa,551

but those transformations are not those of the three spatial components of a 4-vector. It552

is those components "perpendicular" to the boost that transform, not those "parallel" to553

it [18]. The electromagnetic field is, as has been derived in the last section, a bi-vector554

and not a vector. Projecting the electric field as a vector, just because the majority of555

undergraduate texts say so, is a big mistake which has consequences for proper thinking.556

Despite the huge revolutions in the early twentieth century, the perceived universe557

continued to look remarkably three dimensional. Why? In the context of physical558

objects whose very integrity involves bonds intermediated through such things as the559

electric field, the answer becomes clear in the present context: the differential, a special560

kind of division involving inverse base elements, generates sets of three-component561

physical objects embedded in a 4-dimensional space extended through products and562

quotients as in Eq. (17). There is a beautiful symmetry between 3-space and elements563

of extended C̀ 1,3 4-space. In any given frame one has a 3-component electric field, a564

3-component magnetic field and 3-components of intrinsic spin as well as the initial565

3-vector spatial components. The physical universe observed is then not merely 3-566

dimensional. It is also not just 4-dimensional. It is effectively four 3-dimensional567
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systems superimposed with each other and incorporating a further four single degrees568

of freedom, as illustrated in the definition of a general multivector Eq. (10) and the569

extended Maxwell equations Eq. (18). These four 3-component objects behave the same570

way as each other under rotations [13], justifying that they behave the same way in571

any slowly-rotated physical object. As discussed above, however, they may behave572

differently under products, quotients and inversions. Consider the ordered product573

of the first element in any column with the second element in the same column. The574

result is always ± the third component of the rotor (those elements isomorphic to the575

quaternions) viz: γ1γ2 = −γ10γ20 = γ23γ31 = γ023γ031 = γ12. In the parlance of576

projected “handedness" in 3-dimensional space one would say that three of the four577

pairs yield a right-handed product and the fourth a left-handed product. The same578

argument for products applies equally in the implementation of ordered quotients -579

divisions. One might, seeming wise, argue that this is fine, we know that nature is580

handed. This is a poor form of wisdom though. 4-dimensional hands do not have581

a well-defined property of “handedness". What matters here is the implicit ordering582

of products and quotients, leading to the proper signs in a non-commuting algebra583

which has been designed to parallel the nature of space-time as closely as possible. Even584

then the choice of order is not without consequence in such an algebra for the signs.585

Should one take time before space or space before time in space-time bivectors? A short586

calculation shows that, though this gives a sign change of the components, the product or587

quotient for such bivectors remains intrinsically left-handed as γ10γ20 = γ01γ02 = −γ12.588

If both possibilities work equally well, it is perfectly possible that nature may choose589

both, and that this may be the underlying cause of such things as the two and only two590

component nature of the fermion intrinsic spin. A full discussion of how this plays out is591

beyond the scope of this paper, but the interested reader can explore this on the quantum592

bicycle society website, quicycle.com, where Innes Anderson-Morrison has implemented593

an algebraic tool up to the task of exploring the various metrics, combinations and594

permutations. The base conclusions and elements remain the same as discussed in595

the previous section, but the signs change here and there without affecting the main596

conclusions. In a work in progress, on the same website Arnie Benn has explored how597

this feeds through to the dimensionality of atoms and molecules. The argument here598

is that the apparent dimensionality of matter is not so much constrained by the three599

vector dimensions of space, but more through the three components of the electric field,600

largely responsible for chemical binding, though the spin plays a vital role at short range.601

Note also that the dimensionality of the visually observed universe on the larger scale is602

intermediated by photon exchange. Light is constrained by the six components (two sets603

of three) of the electromagnetic field. In this view the structure of the universe is much604

more complicated than merely 4-dimensional, though it “looks" very three dimensional605

in terms of the exchanges which paint the world observed.606

8. Conjecture on the relation between inversions and interactions607

This section moves beyond mathematical results, past physical speculation, firmly608

into the realm of conjecture. It is proposed that the process of mutual exchange of a609

scalar energy from one self-contained self-perpetuating, coherent quantum system to610

another may require a mutual inverse between the emitter and absorber. It is suggested611

that it is something looking like a mutual inverse element (up to a scalar scaling factor)612

that allows the condensation of the whole extended hypercomplex state of the emitter,613

together with the equally hypercomplex state (but effectively inverse) of the absorber614

to that of a simple scalar overall. It is further speculated that the product of (extended)615

field and inverse (extended) field constitutes the scalar invariant mass-energy exchange616

between them.617

Consider the process of photon emission, transport in space-time, and subsequent618

absorption. From the point of view of the absorber, an incoming photon wave is collapsed619

on absorption to a scalar rest-mass energy incorporated into the structure of the absorber.620
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Emission is the reverse process, the inverse process. For the electromagnetic field621

component of the photon Fp , the absorber must therefore provide a field Fa such that622

the product is a simple scalar. Such a field is an inverse up to an amplitude, where that623

amplitude squared is related to the energy absorbed. To collapse what may be a (hyper)624

complex incoming photon wavefunction one needs an inverse both in field and in form.625

Insofar as the algebra C̀ 1,3 is a good basis for the description of the field of light, then626

the field inverse is given by Eq. (34).627

As well as inverting the field at each point, the absorber should invert the extended628

field configuration as well. Inversion in a unit spherical shell has been studied extensively629

in the past. The techniques have fallen somewhat out of fashion as a means for solving630

field patterns around complex objects, as numerical computer based methods have631

gained ground. The techniques and concepts, however, are well-described in many older632

textbooks. Here, chapter, section and page references are those of the 1961 book by Moon633

and Spencer [23]. The inversion of form envisaged is that of inversion in a unit sphere, as634

described in chapter 12. The diagram on page 337 is beautiful and apposite. It is worth635

noting that a (spherical) polar distribution inverts to a (bispherical) bipolar distribution636

and vice-versa. See page 346. The appropriate “unit length" for the radius of the637

inversion sphere is related to the wavelength of the exchange photon. Briefly, the inverse638

of a sphere outside the unit inversion sphere, is a sphere inside the unit sphere, displaced639

to the near side, and not touching the inversion centre. The inverse of a plane outside the640

inversion sphere is a sphere inside the inversion sphere, touching the inversion centre.641

In either case, if the emitted wave is spherical, or effectively planar at the absorber, and642

large compared to typical emitters such as atoms and molecules (which is certainly643

the case for visible light) the inverse at the absorber is a very small sphere close to (or644

touching if planar) the inversion centre. One may distinguish three relevant spheres:645

the sphere of inversion already discussed, the sphere associated with the emission,646

which may be denoted the sphere of creation, and finally the sphere associated with the647

collapse of the photon wave to a scalar, the reciprocal sphere of collapse. The conjecture648

is consistent with quantum electrodynamics, as it merely proposes a physical process for649

emission and absorption of photons, not their probabilty. Interestingly however, if the650

interaction process does prove to require a symmetric inverse, this will couple long and651

short length-scales at emitter and absorber, if one finds a short-scale limit for one, such652

as the intrinsic electron size-scale[16,21], this will impose a reciprocal long-scale limit on653

the other, helping to limit divergences.654

There is little physical difference between photon emission and absorption over655

a distance corresponding to a thousand wavelengths, or a million or a quadrillion. It656

seems unlikely that inversion is the only process in the exchange. It is considered that657

there are two kinds of process at work in photon exchange: the creation and subsequent658

annihilation proposed to be related to physical inversion here, and the intermediate659

transmission of the energy as light over many repetitions of wavelength governed by660

differential equations in the usual way. The latter process is well-described by equations661

such as the extended Maxwell-Dirac equation dΨ = 0 or the generalised wave equation662

d(dΨ) = 0 which constrain the evolution of a quantum wave Ψ in free space with663

no external influences. It is worth noting that in the transmission phase, which may664

literally extend across astronomical distances, one is talking about light. At lightspeed,665

the relativistic transformations are such that the appropriate interval τ goes to zero.666

For an exchange photon at lightspeed the emitter and absorber are at the same point667

in space-time. Leaving aside the minor detail that all real photons are not quite on668

mass-shell, this means that, in this sense, the whole universe is “local" for light. All669

that happens for larger and larger distances, is that the wave-front of the light becomes,670

effectively, more and more planar. This has little physical effect for the inversion part of671

the process, because all that happens is that the sphere of collapse moves a little closer to672

the centre of the sphere of inversion. Maxwell’s equations do not include spin, but the673

extended equations Eq. (18) do. Real exchange photons may carry spin. It is apparent674
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from Eq. (57) that the inversion in spin-space takes a similar form. It is worth noting that675

this conjecture, even if it should prove to have a kernel of truth, requires much future676

work to deal with such things as the proper integration of such processes over all space677

and all time and the relationship between the products, quotients and differences of678

fields and spin. There remains, as always, much work to be done.679

9. Conclusions680

The results of this paper have centred on the mathematics of inversion, multipli-681

cation and division in a particular relativistic algebra. That division within the algebra682

represents some aspect of an allowed process in reality is supported by the fact that683

the dynamics of the first order 4-differential of field, is exactly the full set of Maxwell684

equations. The Maxwell equations balance spatial derivatives of nested spatio-temporal685

and temporo-spatial elements with both temporal and spatial derivatives. Apparently,686

whatever division or differentiation represents in the reality of fields, space and time,687

such objects may balance one another in allowed continuous transformations. Extending688

the Maxwell equation to include all the multivector terms leads to a further four cou-689

pled differential equations which mesh in with the extended Maxwell equations. The690

complete equation dΨ = 0 is similar to, but perhaps even more beautiful than the Dirac691

equation, as rest mass in Ψ is introduced as a pair of dynamical terms rather than as692

an inert lump, and the odd terms may be used to represent intrinsic spin and current693

directly [16]. This means that the relation between the physics and the maths in this new694

relativistic quantum mechanics is more direct. The fact that the new equation is even695

more beautiful is no guarantee, of course, that it is more correct.696

That many derived invariants may take the value zero for non-zero components,697

means that the algebra is laced with a network of null-hyperplanes where division is not698

defined. In categorising these a new multi-vector conjugate has been defined. The main699

result of the paper has been an explicit formula for the inverse in the general multivector700

case. Here, the divisor has a fourth-power character. It has been shown that the inverses701

scale relativistically in a way which parallels that which is observed in nature. Those sets702

of quantities that admit zero divisors embody some of the important invariant quantities703

of relativity and electromagnetism. For example, division is not defined on the lightcone,704

and the scalar divisor corresponds here to the invariant interval.705

Further, other combinations parallel those familiar invariants of energy and mo-706

mentum and the important invariants of the electromagnetic field. One set parallels,707

with one exception, the set of quantities in the Dirac equation on which the 4-vector708

derivative, described above, acts. That missing quantity in the set, exposed by this709

analysis, may prove the essential root-Hamilitonian that Dirac sought to describe the710

underlying nature of charge in the further development of his famous theory.711

In addition to all of this, there is another simple hyperplane where division becomes712

undefined, involving the scalar (energy) and the angular momentum(spin) which has713

not yet been investigated widely. This is an area which clearly merits further work.714

In any event there seem to be three kinds of regime for relativistic inversion. The715

first are areas where division is unitary. Such areas allow the definition of allowed716

dynamical processes. These include the development of 4-vector differential equations717

such as the Maxwell equations, as well as the rotations described by that subset of the full718

algebra isomorphic to quaternions. The second area is that of scaling, where vector and719

multi-vector quantities transform relativistically as expected The third is the area where720

division may become undefined, which corresponding to limiting cases where neither721

the mathematics nor nature goes. The divisors in the inversion process correspond to722

scalar quantities which are invariant in all Lorentz frames.723

On the basis of the structure of the relativistic algebra at hand, it has been speculated724

that the apparent 3-dimensional structure of observed reality is, in fact, more complicated725

at root. It would appear that the extended algebra has four, linearly independent 3-726

component spaces, which may appear superimposed to perception. These four may be727
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denoted electric field space, magnetic field space, spin space and space space. Here, each728

has been distinguished by its own three-component column vector.729

It has been conjectured that inversion may play a role in quantum creation and730

quantum collapse, such that photon energy exchange involves both unitary processes731

described by differential equations, and creation and destruction operations at emitter732

and absorber which parallel the mathematical process of inversion in some respects.733

We conclude that the fact the Clifford-Dirac algebra is not a division algebra, does734

not disqualify it as a candidate algebra of reality. On the contrary, there is a case to be735

made for the reverse proposition: that either the manner and areas where division is736

undefined, or scaled or unitary in the algebra are precisely those required to properly737

parallel both the process and structure of physical reality. The evidence appears to require738

the symmetry that reality encompasses space and time, inverse space and inverse time739

and all products and quotients between them.740
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