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Abstract	

A	solution	to	Einstein’s	gravity	field	equations	is	derived	directly	from	his	1916	paper,	
although	it	utilizes	the	conversion	from	Cartesian	to	polar	co-ordinates,	citing	Schwarzschild’s	
paper	for	its	derivation.		

Introduction	

Einstein	published	his	gravity	field	equations	in	his	1916	Ann.	der	Phys.	paper.	He	
suggested	it	would	be	difficult	to	determine	their	solution.	Within	a	year	Schwarzschild	
published	a	paper	giving	a	solution	to	his	field	equations.	Mathematicians	found	out	that	
Schwarzschild	introduced	approximations	to	obtain	his	solution.		

To	overcome	that,	many	went	on	to	derive	their	own	solutions.	Their	generally	
accepted	format	of	their	solution	is:		

𝑑𝑠! = 𝑑𝑡! %1 − "
#
( −	 $#

!

%&'"#(
− (𝑟!𝑑𝜃! + 𝑠𝑖𝑛!𝑑𝜃𝑑𝜙!)	 	 (1)	

where	s	is	the	space-time	co-ordinate	and	𝛼 = !)*
+!
	is	the	Schwarzschild	radius.	The	remaining	

terms	are	those	customarily	used.		

The	equation	1	solution,	like	Einstein’s	paper	deriving	them,	are	complex	and	difficult	
for	most	people	to	follow.	The	topic	is	left	to	experts.	This	presentation	suggests	it	was	not	
necessary	for	Einstein	to	derive	his	field	equations.	It	goes	directly	from	his	work	prior	to	his	
field	equations,	to	the	exact	solution	to	the	gravity	effects	he	was	describing	earlier.	It	is	the	
solution	to	his	gravity	theory	without	the	need	for	his	field	equations.	

Derivation	

In	his	§	8	(of	22	§s),	Einstein	introduced	the	standard	four	dimension	spatial	tensor	
differential	equation:	

	 ds2	=	gµvdxµdxv		 	 	 	 	 (2)	 	

He	repeated	it	in	§	22.	It	uses	the	normalization	of	setting	the	speed	of	light,	c	=	1.	His	first	
derived	field	equations	were		his	equation	(47)	in	§	14.	This	presentation	goes	from	equation	
(2)	above,	extracted	from	his	§	8	to	exact	the	exact	solution.		

Expanding	gµv	gives:		

	 gxx	 gxy	 gxz	 gxt	
	 gyx	 gyy	 gyz	 gyt	
gµv			=		 gzx	 gzz	 gzz	 gzt	 	 	 	 (3)	
	 gtx	 gty	 gtz	 gtt	
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Einstein	interchangeably	used	the	notation	x	=	1,	y	=	2,	z	=	3	and	t	=	4.	The	µµ	terms	are	the	µ	
term	squared.	Equation	3	can	be	re-written	as:	

	 gx2	 gxy	 gxz	 gxt	
	 gyx	 gy2	 gyz	 gyt	
gµv			=		 gzx	 gzy	 gz2	 gzt	 	 	 	 (4)	
	 gtx	 gty	 gtz	 gt2	

Adding	the	differential	terms	gives:	

	 	gx2dx2	gxydxy	 gxzdxz	 gxtdxt	
	 	gyxdyx	 gy2dy2	 gyzdyz	 gytdyt	
gµvdµv	=	gzxdzx	 gzydzy	 gz2dz2	 gztdzt	=	ds2.		 	 	 (5)	
	 	gtxdtx	 gtydty	 gtzdtz	 gt2dt2	

Calculating	the	individual	gµv,	and	dxµdxv	is	difficult.	However,	gravity	is	spherically	
symmetric	for	a	massive	body,	see	figure	1.	In	that	situation,	gx	=	gy	=	gz	=	g1,	making		

gµµ	=	g11	=	gx2	=	gy2	=	gz2.	Equation	(5)	to	be	re-written	as:		

	 g112dx2	A	 B	 C	
	 D	 g222dy2	E	 F	
ds’2=	 G	 H							g332dz2	 J	 	 	 	 (6)	
	 K	 L	 M	 g44dt2	
	

where	ds’	is	the	differential	term	in	Cartesian	co-ordinates.	It	is	the	same	ds	term	used	in	the	
polar	co-ordinate	solution	of	equation	(1).	It	is	used	only	to	show	the	format	is	different.	All	
µv	components	have	been	replaced	by	A	to	M	respectively.		

Einstein	used	the	nomenclature	that	x,	y,	and	z	refer	to	the	three	orthogonal	space	
dimensions	and	t	is	time.	As	such,	the	only	two	important	dimensions	are	x	=	g1	and	t	=	g4.	In	
his	§	22,	Einstein	derived:		

𝑔&& =	– %1 +
"
#
(	 	 	 	 	 	 (7)	

That	means	that		𝑔!! = 𝑔,, =– %1 +
"
#
(	 	 	 	 (7a)	

	 The	question	arises,	“from	where	did	Einstein	get	his	α	term?”	He	inferred	it	in	his	
1911	paper	“On	the	Influence	of	Gravitation	on	the	Propagation	of	Light.	It	was	derived	by	
using	Newtonian	gravity	on	packets	of	electromagnetic	energy,	i.e.,	photons,	that	he	described	
as	having	mass	in	his	1905	paper	“Does	the	Inertia	of	a	Body	Depend	upon	its	Energy	
Content?”		

Its	origin	is	not	otherwise	referred	to	in	his	1916	foundations	paper.	However,	it	is	
apparent	from	his	work,	and	that	of	others	who	followed,	that	he	was	using	the	𝛼 =	

!"#
$!
	used	

in	equation	(1).	It	adds	to	the	confusion	associated	with	his	work.	

He	used	the	notation	that	−1 = 𝑔&&𝑑𝑥&!.	Re-arranged	that	gives:	

𝑑𝑥& = −	
%

√'""
.		 	 	 	 	 	 	 (8)		
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Figure 1   Schematic illustration of the symmetry of gravity associated with a massive object. 

In	the	spherically	symmetric	situation	of	gravity	associated	with	a	massive	object,	x	
and	r		are	interchangeable,	see	figure	1.	So	are	their	derivatives.	Inserting	equation	(7)	into	
equation	(8)	gives:	

𝑑𝑥 =		
%

(%) #
!$*
	 	 	 	 	 	 (9)	

when	𝛼 ≪ 𝑟.	Einstein	went	on	to	state	“it	follows	that,	correct	to	a	first	order	of	small	
quantities,		

𝑑𝑥 = 1 −	
+
!,
	“		 	 	 (Einstein’s	equation	71)	

That	is,	
%

(%).)
	≈ 1 − 𝑥	when	x	<<	1.	It	is	an	approximation	that	is	only	valid	for	r≫ 𝛼.	Einstein	

regularly	used	that	approximation	in	in	his	1916	“Foundations”	paper.	As	such,	any	exact	
solutions	to	his	field	equations	will	always	be	approximations.	

Staying	with	his	original	solution	of	𝑑𝑥 = &

%&- "
!#(
,	gives:		

𝑑𝑥! =	
%

(%)#$*
	when	𝛼 ≪ 𝑟.	 	 	 	 	 (10)	

Multiplying	equations	(7)	and	(10)	gives:		

𝑔&&𝑑𝑥! =		– %1 +
"
#
(	. %

(%)#$*
	 =	–1	 	 	 	 (11)	

In	a	radially	symmetric	solution,	his	equation		𝑔&& = 𝑔!! = 𝑔,, = −%1 + "
#
(.	In	a	set	

gravitational	field,	the	speed	of	light	is	constant.	A	change	in	length	results	in	a	negative	
inverse	change	in	time.	That	gives:		

𝑔.. =	
%

(%)#$*
		 	 	 	 	 	 	 (12)	

In	his	equation	70,	Einstein	approximated	it	to		

	 𝑔.. =	1 −
"
#
	

In	the	same	manner,	that	gives	𝑑𝑡 = %1 + "
!#
	(and	𝑑𝑡! = %1 + "

#
(.	That	gives:		

y

z

x

r
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𝑔//𝑑𝑡! =	
%

(%)#$*
	. %1 + "

#
( = 1	 	 	 	 	 (13)	

Inserting	equations	(11)	and	(13)	into	equation	(6)	gives:	

	 –1	 A	 B	 C	
	 D	 –1	 E	 F	
ds’2	=	 G	 H	 –1	 J	 	 	 	 (14)	
	 K	 L	 M	 +1	
	
Equation	(14)	informs	us	only	that	time	is	different	from	space.	Beyond	that,	it	is	

difficult	to	work	out	what	is	happening.	That	invokes	what	Einstein	considered	one	of	his	
greatest	thoughts.	An	internal	observer	cannot	tell	the	difference	between	free	falling	under	
gravity	or	being	in	a	gravity	free	zone.	Nor	could	an	observer	tell	the	difference	between	
being	at	rest	in	a	gravitational	field	or	being	accelerated	in	gravity	free	space.		

In	order	to	work	out	what	is	happening,	it	is	necessary	to	fix	one	of	them.	Fixing	the	
derivatives	means	the	positions	are	fixed	and	we	can	determine	the	gravitational	fields	at	that	
position.	Fixing	g	is	the		equivalent	of	uniform	acceleration.	Fixing	the	derivatives	means	
fixing	a	point	in	space	where	Newton’s	g	has	a	fixed	value.	Fixing	them	at	1	allows	the	result	
to	be	multiplied	by	any	value	of	Newton’s	g	in	future	calculations.		

That	makes	it	apparent	that	Einstein’s	field	equations	deal	with	the	difference	between	
his	gravity	theory	and	Newtonian	gravity.	His	calculations	do	not	determine	absolute	gravity	
values.		

Using	equations	(7)	and	(12),	equation	(14)	becomes:	

	

	 −%1 + "
#
(								A	 B	 C	

	 			D	 				− %1 + "
#
(	 	E		 F							

ds’2			=						G	 												H	 							−%1 + "
#
(	 J	 	 	 (15)	

	 			K	 								L	 																					M									 %
(%)#$*

	

Converting	from	Cartesian	to	polar	co-ordinates	is	virtually	a	look	up	equation.	It	was	
done	by	Schwarzschild	in	his	1916	paper.	Such	conversion	gives:	

𝑑𝑠! = $/!

%&-"#(
−	𝑑𝑟! %1 + "

#
( − (𝑟!𝑑𝜃! + 𝑠𝑖𝑛!𝑑𝜃𝑑𝜙!)	 	 (16)	

The	A	to	M	values	can	be	determined	by	calculating	back	from	equation	(16),	if	desired.		
Equation	(16)	is	the	exact	solution	to	Einstein’s	field	equations.	It	differs	from	the	

accepted	Schwarzschild	solution	because	those	who	removed	Schwarzschild’s	approximation	
did	not	remove	the	approximations	Einstein	made.	Those	approximations	come	in	two	forms.		

His	choice	of	tensors	limited	the	accuracy	of	his	work	to	second	order	tensors.	That	
limited	his	whole	study	to	approximations.	It	was	good	for	r	>	≈	3𝛼,	a	justifiable	
approximation.		

The	second	approximations	came	through	approximating	 %
(%)#$*

≈.%1 − "
#
(.	When	"

#
	≈	

10–8,	that	is	a	valid	approximation.	It	does	not	apply	when	r	approaches	𝛼.	Einstein	mentioned	
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his	use	of	approximations	several	times.	They	can	also	be	picked	up	by	following	his	
equations.	Exact	solutions	to	approximations	always	remain	approximations.		

Equation	(16)’s	𝑑𝑠!	solution	is	the	variation	in	gravitational	fields	between	that	
predicted	by	Newtonian	mechanics	and	that	predicted	by	Einstein’s	theory.	The	total	
gravitational	field	strength	is	determined	by	replacing	the	normalized	gravitational	field	
strength	by	Newton’s	gravitational	field	strength	of	𝑔0 =

)*
#!
.	That	holds	for	any	value	of	r	and	

M.	It	gives	the	total	gravity	field	strength	under	Einstein’s	theory,	𝑔1 	as	(Robinson	2021):	
	
	𝑔! =

"#

$%&!"'(
#		 	 	 	 	 	 (17)	

Equation	(17)	shows	that	Einstein’s	gravity	is	a	slight	modification	to	Newton’s	theory.	
His	use	of	approximations	mean	that	calculations	pertaining	to	extend	his	results	are	only	
valid	for	𝑟 ≫ 𝛼.	It	is	well	known,	although	derived	again	by	Robinson	(2021),	that	redshift	𝑧 =
"
!#
,	giving:		

	 𝑔1 =	
"#

(%)!0),!
		 	 	 	 	 	 (18)	

when	𝑟 ≫ 𝛼.	

	 Einstein’s	space–time	distortion	is	photon	redshift.	It	is	still	the	cause	of	gravity,	even	
when	photon	redshift	is	too	small	to	measure.	Equations	(17)	and	(18)	predict	that	gravity	is	
weaker	than	Newtons’	inverse	square	law.		

	
Conclusion	

This	study	has	shown	that	equation	16,	the	exact	solution	to	Einstein’s	gravity,	could	
be	determined	without	his	field	equations.	Equations	17	and	18	are	the	complete	gravity	field	
equations	for	gravity	under	Einstein’s	approximations.	They	are	much	easier	to	use	and	
provide	exact	solutions	to	the	gravity	field	equations	he	derived.	There	is	nothing	in	the	above	
that	wasn’t	available	after	1916.	As	such	there	is	no	reason	why	others	couldn’t	take	the	same	
approach.	This	suggests	that	excessive	maths	complexity	has	led	to	incorrect	an	
understanding	of	what	is	otherwise	a	“relatively”	simple	topic.		

	

Post	script	
	 This	study	has	been	extended	to	determine	the	property	of	nucleons	that	alter	the	
electric	permittivity	of	matter	free	space.	The	radial	differential	of	that	electric	permittivity	
gives	an	equation	in	which	Newton’s	inverse	square	law	is	a	first	approximation	and	
Einstein’s	gravity	is	a	second	approximation.	The	exact	solution,	given	in	Robinson	(2023)	
predicts	the	luminous	torus	shaped	objects	that	have	been	detected	at	the	centre	of	two	
galaxies.	They	are	not	black	holes,	in	which	Einstein	never	believed.		

	 Equations	(17)	and	(18)	show	that	gravity	is	weaker	than	inverse	square.	That	has	
significant	consequences	in	cosmology.		

When	gravity	is	inverse	square,	an	infinite	steady	state	universe	will	collapse.		

	𝑔 =	
12,%3
4,!

	→ ∞	as	𝑟 → ∞.	When	gravity	is	less	than	inverse	square,	𝑔	→ 0	as	𝑟 → ∞.		
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An	infinite	steady	state	universe	will	not	collapse!	In	his	1917	paper	on	Cosmological	
considerations,	Einstein	considered	only	a	finite	universe.	Such	a	universe	will	collapse	under	
any	gravity	origins.	
	 As	shown	above,	Einstein’s	calculations	in	his	1916	foundations	paper	showed	that	
gravity	was	weaker	than	inverse	square.	Not	understanding	that	because	of	Einstein’s	
complex	maths,	cosmologists’	attempts	at	fitting	astronomers’	observations	to	their	theory	
has	led	to	increasing	complexities.	Those	complexities	were	resolved	in	Robinson	(2023).	

		

References:	
Einstein	A,	1905;	Ann.	der	Phys.,	18,	639	

Einstein	A,	1911;	Ann.	der	Phys.,	35,	898	

Einstein	A,1916;	Ann.	der	Phys.,	42,	769	
Einstein	A,	1917;	Sitzung.	Preuss.	Akad.	der	Wiss.,	142	
Robinson	V	N	E,	2021;	J.	Phys.	Commun.	5	035013		
https://doi.org/10.1088/2399-6528/abee2f			

Robinson	Vivian,	2023;	The	Common	Sense	Universe,	Kindle,	Chs	9	–	11.	

Schwarzschild	K,	1916;	(English language version) https://arxiv.org/pdf/physics/9905030.pdf  
	


