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Comments on “Spherical Harmony” 

 

 

"The history of mathematics is replete with accounts of the discovery of new ideas in 
algebra or new aspects in geometry that no one before has ever investigated.  The 
names of Pythagoras, Archimedes, Kepler, Galileo, Newton, and Cantor, to name 
only a few, are among those whose names live on with their discoveries in mathe-
matics.  Spherical Harmony, by Gary Doskas, belongs, in my estimation, in the 
category of new aspects in geometry.  

It is also well known that new ideas in mathematics often find that they have applica-
tions in physics.  It must be left for this new aspect in geometry, namely for poly-
conix, to find possible acceptance when applied in the realm of physics. "   

 

- Father Magnus J. Wenninger OSB 

Monk, mathematician, and builder of polyhedrons and polytopes 

 

 

 

“I find the creative mathematical discoveries of Gary Doskas of the utmost originali-
ty and I predict that “Spherical Harmony” will add new value to the body of 
knowledge established by:   

 

·         RB Fuller of “Synergetic Geometry” fame – two books 

·         HSM Coxeter on “Regular Polytopes”...  and 

·         Magnus J. Wenninger on “Spherical Models”  

 

His findings on the relation of PI to the conical ratios found in spheres is of monu-
mental value to the mathematics underpinning geometry.”  

  

William S. Becker 

– UIC Professor of Industrial Design (ret.) and co-inventor  

of the EarthStar Globe/Map geometry 
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Preface 

Several months ago, I became interested in the simple, yet strong structure of a 
tetrahedron. Believing that tetrahedrons would make good building blocks, I used 
modeling clay to create several equally sized tetrahedrons. I began building different 
shapes and before long the shape of an icosahedron surfaced, a shape I wasn’t very 
familiar with. I couldn’t help but notice how well the icosahedron would fit into a 
sphere and this sent me on a journey of geometric discovery.  

As I started drawing circles on a sphere, I noticed that geometry behaved differently 
from what I learned in school. This intrigued me, and I was drawn into this non-
Euclidean geometric world. I soon discovered some fascinating relationships be-
tween the circles, the sphere itself and all of the Platonic solids. I wasn’t solving 
equations or calculating any measurements. I was just doing trial and error geometric 
construction using a compass, a lead pencil and a sphere.  

I began to see these relationships more clearly, not with my eyes, but with my mind’s 
eye. I felt no need to take out the calculator or to begin putting any of this in equa-
tion form, because the shapes themselves said everything. Being able to create these 
shapes by hand and hold them in front of me and experience them made learning 
fun and exhilarating. I didn’t hesitate to act on my intuition as what to do next and I 
wasn’t afraid to make a mistake. In fact I was learning just as much from my mis-
takes as I was from my breakthroughs. In retrospect, it was like finding the 
knowledge within. I was not inventing or creating anything, I was just uncovering 
that was always there, almost like recalling a memory.  

I drew hundreds of patterns and developed my own tools to make construction 
easier. I wanted to learn more about this subject, so I searched the internet and 
visited libraries for some background material on this subject, but I couldn’t find 
anything. So I began writing this book to capture what I was discovering. I use the 
word “harmonic” to describe these relationships, as this was the first word that came 
to mind as I was exposed to these beautiful shapes. To me they appear musical in 
nature. By musical, I’m not implying there is any sound involved, but the conix 
seemed to arrange themselves, based on simple, distinct ratios.  

Non-Euclidean geometry is relatively young, discovered separately in the 1830s by 
mathematicians János Bolyai Nikolai and Ivanovich Lobachevsky, but it was never 
strongly embraced by the mainstream sciences. In fact, they both had difficulty 
getting the academic community to take their work seriously were only posthumous-
ly recognized for the incredible discoveries they had made.    

Soon after the recognition of this discovery, spherical geometry was being used to 
more accurately circumnavigate the globe, which reduced travel time and fuel con-
sumption of seafaring vessels. However, with the advent of World War II, the 
invention of computer technology and the hand calculator, spherical geometry was 
rendered to the sidelines again and interest waned.  
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I’m convinced that non-Euclidean geometry, more specifically, spherical geometry, is 
the purest form of geometry there is but unfortunately underutilized. After all, we 
live on a world that is primarily spherical. Our civilization owes so much to what 
Euclidean geometry has enabled for humanity for the last several thousand years. 
Spherical geometry is based on a rich, multi-dimensional world, which may imply 
complexity to some, but its greatest strengths are its simplicity and beauty and 
perhaps it will carry us forward, well into the future.  

What is remarkable about these geometric relationships is that they can be experi-
enced through pure geometric construction using just a compass. This can easily be 
experienced by both the young and mathematically inexperienced. Knowledge of 
spherical trigonometry is NOT required and only basic trigonometry is required to 
explore the more complex relationships in more detail. 

This book is intended to be a beginning— a documentation of my own amateur 
“discoveries,” put forth with innocent intentions to allow a wider audience and for 
those more experienced with this type of geometry to debunk or encourage my 
work.  I want to continue to experiment, but only with the knowledge that I am not 
covering ground that has already been sufficiently explored. For that, I need input; 
indeed, I genuinely welcome it.  
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Prerequisite: 

 

Before reading this book, I recommend the reader become familiar with the main 
features of the five Platonic solids. They are named for Plato, the ancient Greek 
philosopher and mathematician and have been known for thousands of years. Pla-
tonic solids are a convex polyhedron with regular polygon faces where the same 
number of faces meets at each vertex. 

 

Every polyhedron has a dual polyhedron where the faces and vertices are inter-
changed. The dual of a Platonic solid is another Platonic solid, as follows: 

 

The tetrahedron (it is a self-dual). 

The octahedron and its dual is the hexahedron (or cube). 

The hexahedron (or cube) and its dual is the octahedron. 

The icosahedron and its dual is the dodecahedron.  

The dodecahedron and its dual is the icosahedron.  

 

The five Platonic solids are illustrated in the following Figures I-V. 

 

The tetrahedron is a three-dimensional geometric solid composed of four equilateral 
triangular faces, four vertices and six edges.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure I - Tetrahedron 
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The hexahedron or cube is a three-dimensional geometric solid composed of six 
square faces, eight vertices and twelve edges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The octahedron is a three-dimensional geometric solid composed of eight equilateral 
triangular faces, six vertices and twelve edges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II - Hexahedron 

Figure III - Octahedron 
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The dodecahedron is a three-dimensional geometric solid composed of twelve 
pentagon faces, twenty vertices and thirty edges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The icosahedron is a three dimensional geometric solid composed of twenty equilat-
eral triangular faces, twelve vertices and thirty edges.  

 

 

 

 

 

 

 

 

 

 

 

Figure IV - Dodecahedron 

Figure V - Icosahedron 
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The next prerequisite is having a good understanding of the geometric relationships 
between a circle and its radius as defined by Euclidean geometry. There is the obvi-
ous C = 2πR relationship. From a geometric construction standpoint, the radius R 
can be used to mark off six chords of length R which divides the circle’s circumfer-
ence into six equal arc segments. These six chords also define a hexagon inscribed in 
the circle. These relationships hold true for circles of all sizes. Refer to Figure A for 
a description of how this is done.    

 

 

 

 

 

 

 

 

 

 

 

To start, set the compass to some value R and draw a circle. Now make an arbitrary 
mark M0 on the circle. Place the compass at M0 and make a second mark at M1. 
Move the compass to M1 and make a third mark at M2. Continue in this fashion and 
the sixth mark M6 will coincide with the first mark M0 and as you can see in Figure 
A the circle has been divided into six equal arc segments. The six chords defined by 
these markings, create an inscribe hexagon. This is the natural relationship between a 
hexagon and a circle and is the basis for the "Flower of Life" (a symbol of sacred 
geometry which also has many spiritual and religious beliefs associated with it). 

 

Refer to Figure A as the starting point to draw the Flower of Life. Draw six circles 
centered on points M0 through M5. The result can be seen in Figure B where these 
six new circles created a six-petal flower design that is also known as the "Seed of 
Life."  

Figure A 
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Additional circles can be added to this arrangement by centering each new circle at 
the new intersection points between the outer circles which creates the Flower of 
Life as seen in Figure C.  

  

Figure C 

Figure B 
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Circles can continue to be added and this pattern would continue growing indefinite-
ly. (Refer to Figure D. This is a form of geometric tiling where the circles naturally 
self-intersect and identify where to center additional circles in a self-guiding fashion.  

When I first started drawing circles on a sphere, I thought I would be able to draw 
this Flower of Life pattern, however I was in for a big surprise, as you will see in the 
following chapters. 

 

In Chapter 1, I describe the discovery of some fascinating relationships between 
circles, a sphere itself and all of the Platonic solids.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D 
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Chapter 1: Introduction to Conix Inscribed on a Sphere  

 

The subject matter in this book is not based on Euclidean geometry, but is based on 
spherical geometry (a form of non-Euclidean geometry). The primary focus of this 
book is to describe some simple yet fundamental geometric relationships between 
circles and cones, and the sphere they are inscribed within. As far as I know, these 
relationships have remained unknown for thousands of years. What I find fascinat-
ing is that these geometric relationships can be explored and revealed using just a 
compass and sphere. 

The first part of the book is based on the geometric construction techniques used to 
discover these unique geometric relationships. This is followed by a more formal 
geometric proof which surprisingly, is not overly complex. For the rest of this book, 
I will refer to circles drawn on a sphere as a “conix” to differentiate it from a circle 
drawn on a plane.  

(Note: I use the term "conix" as both the singular and plural form of a circle on a 
sphere.) 

Before we proceed to construct these conix, a quick review of some of the basic 
properties of a conix could be helpful. As seen in Figure 1, the sphere has its center 
at point S with a radius of R. In this example the conix is constructed by placing the 
compass point on the sphere’s north pole or its top antipodal center Cta with a 
conical radius Rta. A similar conix could also be constructed by placing the compass 
point on the sphere’s south pole or its bottom antipodal center Cba with a conical 
radius Rba. The planar center Cp of the conix resides on the axis of the sphere and 
has a planar radius of Rp. The poles and center of the sphere are all, of course, lined 
up on the sphere’s central axis. Euclidean geometry applies to the relationship be-
tween the conix and its planar radius Rp. However, Euclidean geometry does not 
apply to the relationships between the conix and its conical radii Rta and Rba.  

It’s this unique relationship between the conix and its conical radii and the sphere 
that this book will be focusing on. I should also point out that the conix in Figure 1 
can also be described as the intersection of a cone and the sphere. There are three 
cones (Nta, Nba and Ns) that share the conix at its base circle, which have their apex 
located at points Cta, Cba and S respectively. The aperture of cone Nta is 2Ω. The 

aperture of cone Nba is 2Φ. The aperture of cone Ns is 2ϴ. The aperture of a right 
circular cone is the maximum angle between two lines on the cones surface.  

The cone acts like a bridge that links the geometric properties of the two dimension-
al circle with the three dimensional sphere. A right angle cone, in essence defines 
one of two spheres. In one case, the apex of the cone is located on the sphere’s 
surface (Cta or Cba) and in the other the apex is located at the center (S) of the 
sphere. This relationship between the cone and the sphere will be explored in the 
later chapters.  



 

   13 

Here are some of the basic properties of the conix for the geometric model that will 
be used in this book: 

 

i) There is an infinite number of conix on the surface of a sphere where the planar 
centers Cp lay on the axis of the sphere, and where Rp is the planar radius. Euclidean 
geometry traditionally applies to the relationship between Cp and Rp. 

ii) Every conix has two conical centers (Cta and Cba) at the antipodal points on the 
axis of the sphere, with conical radii Rta and Rba. Euclidean geometry traditionally 
does not apply to the relationship between Cp and Rta and Rba. 

iii) Every conix in the northern hemisphere has a dual in the southern hemisphere.  

iv) One bounding condition exists at the north pole of the sphere, where the conical 
angle Ω approaches π/2 and the conical radius Rta approaches zero. 

v) One bounding condition exists at the south pole of the sphere, where the conical 
angle Ω approaches zero and conical radius Rta approaches two. 

 

Rba = 2RcosΦ 

Rp/Rba = sinΦ 

Rta = 2RcosΩ 

Rp/Rta = sinΩ 

4R2 = (Rta)
2 + (Rba)

2 

h = (Rta)
2/2 

 

 

 

Ω + Φ = π/2  

ϴ + 2Ω = π   

ϴ = 2Φ 

 

 

Ranges: 

 

0 < Ω < π/2 

0 < Φ < π/2 

0 < ϴ < π 

 

0 <  Rta < 2R 

0 <  Rba < 2R 

0 <  Rp    < R 

Nta has an aperture of 2Ω 

Nba has an aperture of 2Φ  

Ns    has an aperture of 2ϴ  

 

Figure 1 
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It is important to understand the difference between circles drawn on a plane com-
pared to a conix drawn on a sphere.  

A circle drawn on a plane is a planar circle because its center, radius and circumfer-
ence are all contained in the same plane and as a result it is a two dimensional object.  

The conical radius used to draw a conix has or implies three dimensions, similar to 
that of its associated cone. It has the same two dimensions as a planar circle, plus it 
has a height component (h), which is the height of the cone. When you place the 
compass point on a sphere’s north pole and start drawing a conix, you will notice 
that the sphere’s surface drops away from the north pole. As a result, this adds the 
height component to the conical radius (Rta).    

How does the curvature of the sphere’s surface affect the radii of a conix? For very 
small conix drawn on a very large sphere, Rp and Rta are close to the same size, with 
Rp being slightly smaller. However, as the curvature of the sphere’s surface increases, 
the planar radius Rp decreases proportional to the conical radius Rta. The relationship 
between the conical radius Rta and the planar radius Rp is illustrated in Figures 2-4, 
where the radius R of the sphere is kept constant. 

For small radii, as seen in Figure 2, Rta and Rp are similar in size and the height 
component h is relatively small. However, based on the Pythagorean Theorem, the 
conical radius Rta can be proven to be slightly larger than the planar radius Rp. To 
put this in perspective, if a conix, one mile in diameter, is drawn on a sphere the 
same size as the earth, the height component h would be about two inches. The 
difference between Rta and Rp would be only be about eight billionths of an inch in 
length

Figure 2 
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Rp 

Rta 

Cc 
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Observe in Figure 3, that as the conical radius Rta increases, the planar radius Rp has 
comparatively decreased. You will also notice an increase in the height component h.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The conical radius Rta has been increased further as seen in Figure 4. Now, Rta 
reaches well into the southern hemisphere and the size of Rp has been dramatically 
reduced. In fact, as the conical radius approaches the length of the spherical diame-
ter, the length of Rp would approach zero. If the conical radius Rta exceeds the 
diameter of the sphere, a conix cannot be drawn. 

 

 

 

 

 

 

Figure 3 
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The length of the planar radius Rp and the size of the conix are a function of both 
the sphere’s radius R and the length of the conical radius Rta. The conix has some 
very interesting geometric properties because it’s based on four different radii (R, Rta, 
Rba and Rp).  

When constructing a planar circle, there is no physical limit to the size of the circle, 
other than being limited by the size of your compass. In spherical geometry, the size 
of the conix is limited by the size of the sphere. For analytic purposes, a unit sphere 
is all that is required. As a result, the conical radius only has a range from zero to two 
on a unit sphere.  

It is important to note that the classical V-shaped compass is not sufficient to draw 
conix on a sphere, because it is difficult if not impossible to place the compass point 
on the north pole and draw a conix in the southern hemisphere. A spherical com-
pass is required to draw a conix in any hemisphere on the sphere. Figure 5-6 illus-
trates this point, where the spherical compass in colored green, the conix is colored 
blue and the classical compass is colored red. For conix in the northern hemisphere, 
a classical compass can sometimes be used as seen in Figure 5, but as the conix 
approaches the equator, the compass points are not very perpendicular to the surface 
making it difficult to draw with.   

Rba 

Figure 5 

Rta 
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For conix drawn in the southern hemisphere, the problem only gets worse and a 
spherical compass is required; refer to Figure 6a. 

 

 

 

 

 

 

 

 

 

 

 

Now being familiar with the basic properties of a conix, we can proceed to Chapter 
2 and start constructing conix on the surface of a sphere. 

  

Figure 6a 

Rta 

Rba 
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Chapter 2: Constructing Conix on a Sphere  

The first thing I discovered while drawing conix on a sphere, was that many of the 
relationships that are defined by Euclidean geometry do not apply. One of the most 
basic relationships in Euclidean geometry is that the radius of a circle can be used to 
divide its circumference into six equal arc segments and thus define an inscribe 
hexagon. This geometric relationship is the basis of the Flower of Life as described 
earlier in the Prerequisite chapter.  

Before I proceed, I should describe what led me to this point in my journey. It 
started when I first held an icosahedron in my hands for the first time. I instantly 
envisioned the sphere that circumscribed it and felt compelled to geometrically 
locate its vertices. The following describes the steps I took to do this. 

I started by drawing the initial conix centered at the north pole, refer to Figure 6b to 
see how an arc segment is marked on the first conix with a chord of length Rta. 
Initially I assumed that I could use the conical radius Rta to divide a conix into six 
equal arc segments as was seen in the Flower of Life. To my surprise, the conix was 
not divided into equal arc segments. This was both puzzling and disappointing at 
first and I assumed I had done something wrong, so I repeated the process only to 
get the same result. I soon realized that the conical radius Rta that I chose to draw 
the conix, was too long to divide the conix into six equal arc segments because the 
sixth marking overshoots the start point. At first I tried reducing the size of Rta, and 
although the overshoot was slightly decreasing, the conix was getting so small, it was 
difficult to draw.  

Figure 6b 

Rta 

Rba 
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Let me describe in more detail how I proceeded, refer to Figure 7 which is a North 
Pole view of a sphere (in red) and conix (colored blue). I placed the compass at point 
Cta (or North Pole) and drew a conix with a conical radius of Rta. I then made an 
arbitrary mark at M0 on the conix. I moved the compass to M0 and made another 
mark at M1 defining a chord of length Rta. I then moved the compass to M1 and 
made another mark at M2. I continued marking off chords of length Rta, until I 
returned to the starting mark M0. As you can see in Figure 7, M6 overshoots the M0 
marking indicating that Rta was too long to divide the conix into six arc segments. 

M3 

Figure 7 
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At this point, I increased the length of Rta and redrew the conix and made similar 
markings on the conix. You can see in Figure 8 that the fifth marking M5 now 
undershot M0. I found out the hard way that any time you make an adjustment to 
Rta you need to erase the old conix and start over. It is important to use the same 
radius for drawing the first conix as well as for marking off arc segments on the 
conix. It may take several iterations of tuning Rta to the correct length and you may 
alternate between overshooting and undershooting the initial mark M0. 

Figure 8 
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I continued to tune the conical radius Rta and eventually the 5th marking M5 lined up 
with the start point M0, and the conix was divided into five equal arc segments by an 
inscribed pentagon, as seen in Figure 9. This was my first EUREKA! moment. I 
didn’t know where this was heading but it piqued my interest.  

I came to the following conclusion:  

“There is only one conix on a sphere where its conical radius Rta is the same 
size as the side of its inscribed pentagon”.  

I will refer to this conix as the 5th harmonic conix.  
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Figure 9 

 
 

Rta 

M0 

M5 

M4 

M2 

M1 

Rta 

Rta 

Rta 

Rta 

Rta 

Cta 



 

22 

I felt compelled to continue drawing more conix at the intersection points created by 
each new conix constructed. I did this in a similar fashion as one would draw the 
“Flower of Life” as described in the Prerequisite chapter. Initially, I expected that 
there would an endless number of conix to draw. To my amazement after drawing 
twelve conix, the pattern closed in on itself, and became a seamless and overlapping 
pattern, oriented around multiple axes of the sphere. The pattern was similar to the 
geometric tiling we saw in the Flower of Life, except that it was based on a five-petal 
pattern instead of the six-petal pattern. What is remarkable is that the natural 
intersection of these harmonically coupled conix defined the vertices of an 
icosahedron, a classical Platonic Solid! It was EUREK AGAIN! I will refer to this 
arrangement of twelve conix as the 5th harmonic note, refer to Figure 10. 

Figure 10 
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Upon discovering the 5th harmonic note and classical icosahedron, I spent weeks 
drawing them on any spherical surface I could find, including golf balls, basketballs 
and beach balls. It then dawned on me that there may be more harmonic 
relationships on a sphere. It seemed a natural progression that a 4th harmonic could 
be discovered. So using a similar approach as I used for the 5th harmonic (pentagon-
based), I started increasing the length of Rta to see where that would lead. It wasn’t 
long before I discovered the 4th harmonic conix (square-based). As seen in Figure 11, 
Rta was used to mark off four chords and define an inscribed square in the conix. 
The conix was also a great circle and divides the sphere into equal hemispheres. (See 
Figure 12.) 

I came to the following conclusion:  

“There is only one conix on a sphere where its conical radius Rta is the same 
size as the side of its inscribed square”.  

I will refer to this conix as the 4th harmonic conix.  

 
 

Figure 11 
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As I had done with the 5th harmonic conix, I took the Flower of Life approach and 
started drawing more conix centered on each intersection point. After drawing six 
conix, the natural intersection of these harmonically coupled conix defined the 
vertices of an octahedron, which will be referred to as the 4th harmonic note. (See 
Figure 13.) Although there appears to be only three conix in the 4th harmonic note, it 
actually consists of three pairs of overlapping conix. What appears as one conix, is 
actually a pair of conix centered on antipodal points on the sphere.  

Figure 13 
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At this point I decided to attempt to derive a general solution that describes the 
various harmonic conix and its relationship to the sphere. I use the 5th harmonic 
example to develop the general solution. I knew that every conix on the sphere is 
divided into five equal arc segments by its inscribed pentagon, and the size of  the 
conix is a function of  its conical radius Rta and its conical angle Ω. I needed to find 
an inscribed pentagon whose side was also equal to its conical radius Rta. If  I could 
find this pentagon, it would confirm what I found by construction. If  I couldn’t find 
this pentagon, it would have invalidated my construction proof. Refer to Figure 14 
for the various geometric relationships that will be used in the general solution. 

 

General Solution: 

To find the values of Ω and Rta for each harmonic note, I will define three equations 
that describe Rta in terms of Ω, Rp and w, where w is the “chord angle” (2π/n) of 
the inscribed n-sided polygon. 

Based on triangle Cta Cba P4 (A right triangle based on Thales’ Theorem) 

 

Based on triangle Cta Cp P4 

 

Based on the formula for a chord: 

(Triangle P1P2Cp) 

 

 

By substituting Rp from (E2) 

 

 

 

 

 

 

Figure 14 
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Now I can solve for the various harmonics because I know the chord angle w for 
the inscribed polygon in each conix and I can calculate the value of the conical angle 
Ω from equation (E5). Subsequently, the conical radius Rta and planar radius Rp can 
be calculated from equations (E1) and (E2). The 5th harmonic’s inscribed pentagon 
has w equal to 2π/5. The 4th harmonic’s inscribed square has w equal to 2π/4.   

 

(w = 2π/5) 5th harmonic  Ω ~= π/3.0884   and Rta = 4/√(10+2√5) 

(w = 2π/4) 4th harmonic  Ω    = π/4   and Rta = √2 

 

I noticed a trend where the number of sides of the polygon inscribed in each conix 
decreased by one as the harmonic decreased.  

 

The 5th harmonic conix is based on an inscribed pentagon. 

The 4th harmonic conix is based on an inscribed square. 

 

I suspected that there could be a 6th harmonic conix with an inscribed hexagon. I 
knew that the chord angle w of an inscribed hexagon would be equal to 2π/6. This 
would correspond to the 6th harmonic conix, if it existed. So I decided to test this 
value in the general solution, and it predicted theses values:  

 

Ω = π/2   Rta = 0   Rba = 2 

 

Interestingly, the 6th harmonic describes the infinitively small point at the north pole 
where no curvature exists, where the rules of Euclidean geometry apply. I’m not 
really sure what is implied by the 6th harmonic, but the general solution is hinting 
that it’s of a very small dimension. In this geometric model, Euclidean geometry 
would be a good approximation for geometry drawn on a small patch earth of our 
planet. 

 

It seemed reasonable that a 3rd harmonic existed and that it would contain an in-
scribed equilateral triangle where w is equal to 2π/3. The general solution predicts 
theses values: 

 

(w = 2π/3) 3rd harmonic  Ω ~= π/5.1043  and Rta = 2√2/√3 
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As I proceeded to set the compass to this conical radius, I realized that the conix 
would be located in the southern hemisphere. This made it difficult to draw. Think-
ing I was being clever, I thought I could use the other conical radius Rba to draw the 
conix. However, when I used Rba there was no geometric tiling taking place and the 
pattern of conix was not converging. So I had to revert back to using the conical 
radius Rta which would be difficult to draw accurately with a classical compass. To 
resolve this limitation, I made a spherical compass (as seen colored green in Figure 
15) that could reach into the southern hemisphere. 

 

 

 

 

 

 

 

 

 

 

Figure 15 

Rta 

Rba 
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After a few iterations of tuning the compass to the precise length, I discovered the 
3rd harmonic conix, as seen in Figure 16a, which is a view from the south pole of the 
sphere. Refer to Figure 16b where Rta is used to mark off three chords and define an 
inscribed equilateral triangle in the conix.  

I came to the following conclusion:  

“There is only one conix on a sphere where its conical radius Rta is the same 
size as the side of its inscribed equilateral triangle”.  

I will refer to this conix as the 3rd harmonic conix.  

I now know that the conical radius Rba was too short to divide the conix into three 
equal arc segments. There is a unique geometric relationship between the conix and 
each of its conical radii. Just because the conical radius Rta has a harmonic relation-
ship with the sphere, this doesn’t imply that conical radius Rba does.   

 

 
 

Figure 16a 
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As I had done with the 4th harmonic conix, I took the Flower of Life approach and 
started drawing more conix centered on each intersection point. After drawing four 
conix, the natural intersection of these harmonically coupled conix defined the 
vertices of a tetrahedron, which will be referred to as the 3rd harmonic note (See 
Figures 17-19.) 

Figure 17 



 

30 

 

Figure 18 

Figure 19 
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In addition to the bounding condition of the 6th harmonic, there were three funda-
mental geometric relationships discovered. What I find striking is that they were 
discovered purely with plain geometric construction techniques, using only a com-
pass and sphere. (This simplicity could be ancient in origin!) Let’s summarize what 
was discovered. 

1) There is only one conix on a sphere where the length of the side of its 
inscribed pentagon has the same length of its conical radius Rta. I will refer to 
this conix as the 5th harmonic conix. 

a. Twelve 5th harmonic conix self-intersect each other in a seamless and  
overlapping pattern and their intersection points define the vertices of 
an icosahedron and are referred to as the 5th harmonic note. 

2) There is only one conix on a sphere where the length of the side of its 
inscribed square has the same length of its conical radius Rta. I will refer to 
this conix as the 4th harmonic conix. 

a. Six 4th harmonic conix self-intersect each other in a seamless and 
overlapping pattern and their intersection points define the vertices of 
an octahedron and are referred to as the 4th harmonic note. 

3) There is only one conix on a sphere where the length of the side of its 
inscribed equilateral triangle has the same length of its conical radius Rta. I will 
refer to this conix as the 3rd harmonic conix. 

a. Four 3rd harmonic conix self-intersect each other in a seamless and 
overlapping pattern and their intersection points define the vertices of a 
tetrahedron and are referred to as the 3rd harmonic note. 

These three shapes conform, interestingly, with Buckminster Fuller’s three Primary 
Structures - Icosahedron, Octahedron and Tetrahedron!   
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What I hadn’t explored yet, was if  there were any harmonics beyond the 3rd harmon-
ic. At first, it didn’t seem feasible that there would be a 2nd harmonic conix because 
all of  the Platonic solids were accounted for and given the trend of  inscribed poly-
gons, what would follow an inscribed triangle? There is no such thing as a two-sided 
polygon. But I was curious what the general solution would predict. The decreasing 
trend of  chord angle results in w equal to 2π/2 and the general solution predicts the 
following values for the 2nd harmonic conix:  

 

(w = 2π/2) 2nd harmonic  Ω   = π/6   and Rta = √3 

 

Here are the steps I took to construct the 2nd harmonic note. The illustration in 
Figure 20 is a side view of the sphere. The compass is set with Rta equal to √3. Then 
the compass is placed at an arbitrary point Ca and the first conix X1 is drawn deep 
into the southern hemisphere. An arbitrary point on X1 is defined as point Cb. The 
compass is then moved to Cb and the second conix X2 is drawn refer to Figure 21. 
Notice how the second conix X2 abuts the first conix X1 at point Cc and that X1 is 
now divided into two equal arc segments by points Cb and Cc. The compass is then 
moved to Cc and the third conix X3 is drawn which abuts both conix X1 and X2 as 
seen in Figure 22. Now each conix is divided in two by the abutment points with the 
other two conix.

Figure 20 
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Refer to Figure 23-25 to see various perspective views of the 2nd harmonic note. 
Notice that three conix wrap around the circumference of the sphere and fully abut 
forming an inscribed equilateral triangle in the sphere’s equator. It took me while to 
recognize that the 2nd harmonic note was associated with a polyhedron, even though 
it was not one of the Platonic solids. The 2nd harmonic note is based on a regular 
triangular prism. 

Figure 23 
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Figure 24 

Figure 25 
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 Chapter 3: Harmonic Notes Variations and Intervals 

In this chapter I will explore the various harmonics in more detail. I have introduced 
the concept of  a harmonic conix and a harmonic note. A harmonic conix has a 
unique relationship with the sphere it is constructed on. The conical radius of  a 
conix (Rta and Rba) can be used to divide its circumference in equal arc segments. 
There are five fundamental harmonics (6th, 5th, 4th, 3rd and 2nd) and an infinite 
number of  fractional harmonics. A harmonic note is a particular arrangement of  
harmonic conix on a sphere oriented around the axes of  polyhedrons. It’s not just 
any random arrangement of  conix, it’s a natural harmonic relationship of  self-
intersecting conix on a sphere. These arrangements of  conix are self-guided by the 
intersection of  the conix in a similar fashion as the “Flower of  Life” described in 
Chapter 1. It just so happens that the three main harmonic notes are oriented 
around the Platonic solids.  

The 5th harmonic defines the twelve vertices of  an icosahedron. 

The 4th harmonic defines the six vertices of  an octahedron. 

The 3rd harmonic defines the four vertices of  a tetrahedron. 

So let’s explore the 5th harmonic note in more detail. The location of  these vertices 
on the sphere fully defines the icosahedron, in that its edges are defined as the lines 
between two adjacent vertices and its faces are defined by the triangles form by three 
vertices. Refer to Figure 26 to see how one section of  an icosahedron can be created 
by connecting the intersection points on the 5th harmonic note. 
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Figure 26 
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We know that the twelve vertices of  an icosahedron also correspond to the twelve 
faces of  its dual, the dodecahedron. However, as you can see in Figure 43a there are 
no intersection points that define the vertices of  the pentagonal faces. There is a way 
around this. We can use a compass locate the twenty face axes of  the icosahedron 
through triangulation from the three vertices that define each face, refer to Figure 
27. 

 

Figure 27 
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Now that the face axes are identified, the pentagonal face on the dodecahedron can 
be projected on the sphere’s surface as seen in Figure 28.

Figure 28 
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We can use a compass locate the thirty edge axes of  the icosahedron through 
triangulation from the vertices and  face axes, as seen in Figure 29.  

Figure 29 
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All sixty-two axes of  the icosahedron can now be located as seen in Figure 30. The 
sphere is considered fully-pointed when all sixty two axes have been identified 
(twelve vertices, twenty faces and thirty edges). Fully pointed spheres can be defined 
in a similar way for the 4th and 3rd harmonic notes and are illustrated in Figures 31-
32. 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 
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Figure 31 

Figure 32 
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We have covered the three fundamental harmonic notes up to this point in the book. 
These fundamental notes are oriented around the vertices of its associated polyhe-
dron and the conical radius Rta of its conix is determined by the distance between 
adjacent vertices. The vertices are defined by the natural harmonic interaction be-
tween its conix. I have defined two other harmonic note variations which are orient-
ed around the face and edge axes respectively. The notes oriented around the verti-
ces are referred to as V-notes. The notes oriented around the face axis are referred to 
as F-notes. The notes oriented around the edge axis are referred to as E-notes. 

There exists an interval of notes within each of these harmonic note variations (V-
note, F-note and E-note). The conix in each harmonic note within an interval has a 
different conical radius Rta. In the case of V-notes, the length of its conical radius is 
determined by the distance between the vertex and some other axis (vertex, face or 
edge). In the case of F-notes, the length of this conical radius is determined by the 
distance between the face axis and some other axis (vertex, face or edge). In the case 
of E-notes, the length of this conical radius is determined by the distance between 
the edge and some other axis (vertex, face or edge). In this way, every possible conix 
will be defined. This will be described in more detail in the following paragraphs.  

 

5th harmonic note variations: 

5V-note: Conix oriented to the vertices axes of the icosahedron. 

The base 5V-note consists of twelve conix, each with a conical radius of the distance 
between adjacent vertices axes and oriented around the vertex axes.   

 

5F-note: Conix oriented to the faces axes of the icosahedron. 

The base 5F-note consists of twenty conix, each with a conical radius of the distance 
between adjacent face axes and oriented around the face axes.   

 

5E-note: Conix oriented to the edges axes of the icosahedron. 

The base 5E-note consists of thirty conix, each with a conical radius of the distance 
between adjacent edge axes and oriented around the edge axes.   
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4th harmonic note variations: 

4V-note: Conix oriented to the vertices axes of the octahedron. 

The base 4V-note consists of six conix, each with a conical radius of the distance 
between adjacent vertices axes and oriented around the vertex axes.   

 

4F-note: Conix oriented to the faces axes of the octahedron. 

The base 4F-note consists of eight conix, each with a conical radius of the distance 
between adjacent face axes and oriented around the face axes.   

 

4E-note: Conix oriented to the edges axes of the octahedron. 

The base 4E-note consists of twelve conix, each with a conical radius of the distance 
between adjacent edge axes and oriented around the edge axes.   

 

 

3rd harmonic note variations: 

3V-note: Conix oriented to the vertices axes of the tetrahedron. 

The base 3V-note consists of four conix, each with a conical radius of the distance 
between adjacent vertices axes and oriented around the vertex axes.   

 

3F-note: Conix oriented to the faces axes of the tetrahedron. 

The base 3F-note consists of four conix, each with a conical radius of the distance 
between adjacent face axes and oriented around the face axes.   

 

3E-note: Conix oriented to the edges axes of the tetrahedron. 

The base 3E-note consists of six conix, each with a conical radius of the distance 
between adjacent edge axes and oriented around the edge axes.   

Given that there are numerous harmonic notes, I developed a nomenclature to 
classify them. Each harmonic has three variations or intervals of notes. Let me 
describe this nomenclature using the 5th harmonic as an example.  
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This is the nomenclature to identify each conix. 

 

 

Where “H” indicates the harmonic [2:5] and “I” indicates the interval [V|F|E]. The 

upper “n” [0:3] indicates that the radius is smaller than the base conix and the larger 

the value, the smaller the radius. The lower “n” [0:6] indicates that the radius is larger 

than the base conix and the larger the value, the larger the radius. The “a” [v|f|e] 
indicates which axis is intersected by the conix and is meant to assist in visualization 
and construction. Here are some examples for the 5th harmonic variations. 

 

5V-interval: 

Describes the tonic or base note created by a conix with a radius determined 
by the distance between adjacent vertex axes of the icosahedron. 

Describes the note created by a conix with a radius larger than the base note 
and the conix intersects the next furthest axis (face) of the icosahedron. 

Describes the note created by a conix with a radius smaller than the base note 
and the conix intersects the next furthest axis (edge) of the icosahedron. 

 

5F-interval: 

Describes the tonic or base note created by a conix with a radius determined 
by the distance between adjacent face axes of the icosahedron. 

Describes the note created by a conix with a radius larger than the base note 
and the conix intersects the next furthest axis (edge) of the icosahedron. 

Describes the note created by a conix with a radius smaller than the base note 
and the conix intersects the next furthest axis (vertex) of the icosahedron. 

 

5E-interval: 

Describes the tonic or base note created by a conix with a radius determined 
by the distance between adjacent edge axes of the icosahedron. 

Describes the note created by a conix with a radius larger than the base note 
and the conix intersects the next furthest axis (face) of the icosahedron. 

Describes the note created by a conix with a radius smaller than the base note 
and the conix intersects the next furthest axis (vertex) of the icosahedron. 
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The following Figures 33-35 are used to assist in identifying the different conix for 
each interval. These illustrations are a two dimensional projection of an icosahedron 
and viewed from the different axes. The various colored line segments represent a 
two dimensional projection of the conical radius Rta and the two axes which they 
connect to. 

Figure 33 is a vertex view of the icosahedron and the center of each conix is located 
at the vertex in the center of the illustration. The smallest of the 5th harmonic V-
notes is the 5V3e conix and the length of its conical radius Rta is determined by the 
distance between a vertex and the closest edge axis. The largest of the 5th harmonic 
V-notes is the 5V2e conix and the length of its conical radius Rta is determined by the 
distance between a vertex and the farthest edge axis without going into the southern 
hemisphere. 

 

 

 

 

 

Figure 33 
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Figure 34 is a face view of the icosahedron and the center of each conix is located at 
the face axis located at the center of the illustration. The smallest of the 5th harmonic 
F-notes is the 5F2e conix and the length of its conical radius Rta is determined by the 
distance between a face axis and the closest edge axis. The largest of the 5th harmon-
ic F-notes is the 5F5e conix and the length of its conical radius Rta is determined by 
the distance between a face axis and the farthest edge axis without going into the 
southern hemisphere.

Figure 34 
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Figure 35 is an edge view of the icosahedron and the center of each conix is located 
at the edge axis located at the center of the illustration. The smallest of the 5th har-
monic E-notes is the 5E2f conix and the length of its conical radius Rta is determined 
by the distance between an edge axis and the closest face axis. The largest of the 5th 
harmonic E-notes is the 5E6e conix and the length of its conical radius Rta is deter-
mined by the distance between an edge axis and the farthest edge axis without going 
into the southern hemisphere.

Figure 35 
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Using Figures 33-35, I was able to identify all of the possible conix of each of the 
harmonic notes for each interval (V-note, F-note and E-note) of the 5th harmonic. I 
also listed all of the conix for the other harmonic notes as well, see Table I.  

 

 

 

V- notes F-notes E- notes 

5V2e 5F5e 5E6e 

5V1f 5F4v 5E5e 

5V 5F3f 5E4f 

5V1e 5F2e 5E3e 

5V2f 5F1e 5E2v 

5V3e 5F 5E1f 

 5F1v 5E 

 5F2e 5E1v 

  5E2f 

   

 4F1e 4E1v 

4V 4F 4E 

4V1f 4F1v 4E1v 

4V2e 4F2e 4E2f 

   

3V1e 3V1e 3V1e 

3V 3V 3V 

3V1e 3V1e 3V1e 

   

2V2f   

2V1v   

2V   

Table I 



 

50 

There are twenty-three conix within the 5th harmonic intervals, six within the 5V-
interval, eight within the 5F-interval and nine within the 5E-interval. My first obser-
vation was that the sphere’s equator was the largest conix and was common to all 
three intervals. Secondly, some conix were common to two intervals and thirdly, 
some conix were unique to one interval. Refer to Table II for a grouped list in 
descending order of the length of the conical radius for the 5th harmonic. I simply 
used a compass to establish the order. 

 

 

  

V- notes F-notes E- notes 

5V2e 5F5e 5E6e 

5V1f 5F4v  

  5E5e 
 5F3f  
 5F2e 5E4f 

5V   
  5E3e 

5V1e  5E2v 
 5F1e 5E1f 

 5F  

5V2f 5F1v  

  5E 

5V3e  5E1v 

 5F2e 5E2f 

   

 

Table II 
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By measuring the various conical radii of each conix for all of the 5th harmonic notes 
I was able to establish the following relationship between conix. These are the basic 
harmonic conix identities. There is nothing overly significant about these identities 
that the reader needs to be immediately concerned about.  In some cases the same 
size of conix is used in two different notes but centered on different axes. They all 
can be easily visualized by using a three dimensional model of an icosahedron and 
highlighting each radius on its surface. As a result, this will minimize that number of 
geometric solutions required to derive the precise value of each radii.    
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I have essentially defined all possible harmonic conix that can be used for every 
possible harmonic note. I have constructed each harmonic note and they are illus-
trated on the following pages. Each row of illustrations contains the three views 
(vertex, face and edge) of each harmonic note. 
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       Vertex view             Face view             Edge view 
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        Vertex view          Face view          Edge view 
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      Vertex view          Face view          Edge view 
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      Vertex view          Face view         Edge view 
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         Vertex view          Face view            Edge view 
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      Vertex view          Face view         Edge view 
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      Vertex view          Face view         Edge view 
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     Vertex view          Face view         Edge view 
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       Vertex view          Face view         Edge view 
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 Vertex view          Face view         Edge view 
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Vertex view          Face view         Edge view 
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Vertex view          Face view         Edge view 
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Vertex view          Face view         Edge view 
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  Vertex view          Face view         Edge view 
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       Vertex view          Face view         Edge view 
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       Vertex view          Face view         Edge view 
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Chapter 4: The Expansion Phases of the Polyspherons   

In this chapter, I introduce a shape referred to as a polyspheron which consists of an 
arrangement of conix similar to harmonic notes. The polyspheron uses a different 
geometric reference for its construction. The unit conix will be the geometric refer-
ence and the sphere’s radius R will vary in size. The harmonic notes seen in previous 
chapters use a unit sphere as its geometric reference and the size of the conix varied. 
There are eight different intervals of polyspherons (5V, 5F, 5E, 4V, 4F, 4E, 3V and 
2V) that correspond to each of the intervals of harmonic notes. 

When the conix in a polyspheron are concentric with the sphere, then the sphere’s 
radius will be one unit and have a minimum volume. The polyspherons grow in size 
as the conix are re-arranged and their centers move away from the center of the 
sphere. Polyspherons can continue to grow as long as the conix touch each other 
and they reach their maximum volume when the conix abut each other. The nomen-
clature used for harmonic notes will be used for polyspherons as well. 

The various polyspherons from each interval are listed in Table III. The first column 
contains the minimum volume polyspheron for each interval. The polyspherons 
increase in volume as you go left to right along each row.  

 

 

 

 

Now I will describe the minimum volume polyspheron for each interval. The conix 
in each of these polyspherons is a “great circle” which divides the sphere into two 
equal hemispheres. The centers of the conix coincide with the center of the sphere 
and they both have a radius of one. There are no polyspherons smaller than these 
eight minimum volume polyspherons. 

 

2V2f 2V1v 2V        

3V1e 3V 3V1e        

4V 4V1f 4V2e        

4F1e 4F0f 4F1v 4F2e       

4E1vf 4E 4E1v 4E2f 4E3      

5V2e 5V1f 5V 5V1e 5V2f 5V3e     

5F5e 5F4v 5F3f 5F2v 5F1e 5F 5F1v 5F2e   

5E6e 5E5e 5E4f 5E3e 5E2v 5E1f 5E 5E1v 5E2v 5E3 

Table III – Polyspheron Intervals 
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The simplest of the minimum volume polyspherons is 2V2f which consists of three 
conix centered along the axes of the square faces of a regular triangular prism. Two 
groups of three conix intersect at the axes of the triangular faces of the prism. Refer 
to Figure 36 to see the triangular prism and two geometric models (trispheron and 
its harmonic note) of the 2V2f polyspheron. Many other prism-based solids exist as 
well.  

 

 

 

 

 

 

 

 

 

 

 

The next interval of polyspheron is 3V. The minimum volume polyspheron 3V1e 
consists of four conix that have similar geometric properties as a circumscribed 
cuboctahedron, where groups of two circles intersect at its twelve vertices. Refer to 
Figure 37 to see the cuboctahedron and two geometric models (tetraspheron and its 
harmonic note) of the 3V1e polyspheron.

Figure 36 

Figure 37 
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The next interval of polyspheron is 4V. The minimum volume polyspheron 4V 
consists of six conix that have similar geometric properties as a circumscribed octa-
hedron, where groups of four circles intersect at its six vertices. Although there only 
appears to be three conix in this polyspheron, there are actually three pairs of over-
lapping circles that will become evident during the first expansion phase. Refer to 
Figure 38 to see the related octahedron and two geometric models (hexaspheron and 
its harmonic note) of the 4V polyspheron. 

 

 

 

 

 

 

 

 

 

The next interval of polyspheron is 4F. The minimum volume polyspheron 4F1e 
consists of eight conix that have similar geometric properties as a circumscribed 
cuboctahedron, where groups of four circles intersect at its twelve vertices. Although 
there only appears to be four conix in this polyspheron, there are actually four pairs 
of overlapping circles that will become evident during the first expansion phase. 
Refer to Figure 39 to see the related cuboctahedron and two geometric models 
(octaspheron and its harmonic note) of the 4F1e

 polyspheron. 

 

 

 

Figure 39 

Figure 38 
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The next interval of polyspheron is 4E. The minimum volume polyspheron 4E1e 
consists of twelve conix that have similar geometric properties as a circumscribed 
rhombic dodecahedron (dual of a cuboctahedron), where groups of two conix 
intersect at six vertices and groups of three conix intersect at the other eight vertices. 
Although there only appears to be six conix in this polyspheron, there are actually six 
pairs of overlapping circles that will become evident during the first expansion 
phase. Refer to Figure 40 to see the related rhombic dodecahedron and one geomet-
ric model (its harmonic note) of the 4E1e

 polyspheron. 

 

 

 

 

 

 

 

 

 

The next interval of polyspheron is 5V. The minimum volume polyspheron 5V2e 
consists of twelve conix that have similar geometric properties as a circumscribed 
icosadodecahedron where groups of two conix intersect at its thirty vertices. Alt-
hough there only appears to be six conix in this polyspheron, there are actually six 
pairs of overlapping circles that will become evident during the first expansion 
phase. Refer to Figure 41 to see the related icosadodecahedron and two geometric 
models (dodecaspheron and its harmonic note) of the 5V2e

 polyspheron. 

 

 

Figure 40 

Figure 41 
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The next interval of polyspheron is 5F. The minimum volume polyspheron 5F5e 
consists of twenty conix that have similar geometric properties as a circumscribed 
icosadodecahedron where groups of two conix intersect at its thirty vertices. Alt-
hough there only appears to be ten conix in this polyspheron, there are actually ten 
pairs of overlapping circles that will become evident during the first expansion 
phase. Refer to Figure 42 to see the related icosadodecahedron and one geometric 
model (its harmonic note) of the 5F5e polyspheron. 

 

 

 

 

 

 

 

 

 

The next interval of polyspheron is 5E. The minimum volume polyspheron 5E6e 
consists of thirty conix that have similar geometric properties as a circumscribed 
rhombic tricontahedron where groups of five conix intersect at its thirty vertices. 
Although there only appears to be fifteen conix in this polyspheron, there are actual-
ly fifteen pairs of overlapping circles that will become evident during the first expan-
sion phase. Refer to Figure 43 to see the related dodecahedron and one geometric 
model (its harmonic note) of the 5E6e polyspheron. 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                                          Figure 43 

Figure 42 
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Now I will describe the first expansion phase of each of these polyspherons from 
their minimum volume to their maximum volume. During this expansion phase, the 
conix maintain their radius at one, but rearrange themselves on the surface of the 
polyspheron. This new arrangement reduces the amount of overlap between conix 
and as a result causes the polyspheron to grow in size as the center of its conix move 
away from the center of the sphere.  

 

The 2V polyspheron 

The 2V interval of polyspheron has three states (2V2f 2V1v 2V) that are based on an 
arrangement of three unit conix. The minimum volume state is the 2V2f poly-
spheron, where the sphere and conix centers share a single point. The conix are 
aligned on three different axes of a triangular prism and the conix and sphere has a 
radius of one unit. Refer to Figure 44 to see an illustration the three states (2V2f 2V1v 

2V).  

The first growth step occurs as the conix start moving away from the center of the 
sphere. While the conix radius remains constant, the radius of the polyspheron 
grows from 1 to √7/√6. This is the 2V1v polyspheron and it has similar geometric 
properties to a circumscribed triangular prism. 

The second growth step occurs as the conix start moving further away from the 
center of the sphere. While the conix radius remains constant, the radius of the 
polyspheron grows from √7/√6 to 2/√3. This is the 2V polyspheron and it has 
similar geometric properties to a midradius triangular prism and is the maximum 
volume state of the 2V interval of polyspheron. In its maximum state and poly-
spheron’s conix have no overlap, but they abut fully. 
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2V2f 

2V1v 

2V 

Figure 44 
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I have put together a composite view of all three states of the 2V polyspheron, super 
imposed in the illustration in Figure 45, where the individual expansion steps can be 
seen relative to each other. The 2V2f polyspheron is located at the center of illustra-
tion. The white arrows highlight the first expansion step (2V2f to 2V1v) as the conix 
move away from the center of the polyspheron. The red arrows highlight the second 
expansion step (2V1v to 2V) as the conix move even further from the center of the 
polyspheron. During the first expansion phase, the polyspheron’s expansion is halted 
when the conix overlap is eliminated and the conix become fully abutted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 45 
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The other seven polyspherons grow in a similar fashion and in various growth steps. 
Table IV lists the various polyspheron for each interval, the polyspheron’s radius and 
the polyspheron’s reference shape. The reference shape type could be inscribed, 
midradius or circumscribed.  

 

Polyspheron Shape Type Radius 

2V2f Triangular prism Inscribed 1 

2V1v
 Triangular prism Circumscribed √7/√6 

2V Triangular prism Midradius 2/√3 

3V1f Cuboctahedron Circumscribed 1 

3V Tetrahedron Circumscribed 3/2√2 

3V1e Tetrahedron Midradius √3/√2 

    

   Table IV 

 

Polyspheron Shape Type Radius 

4V Octahedron Circumscribed 1 

4V1f Hexahedron Circumscribed √3/2 

4V2e Hexahedron Midradius √2 

4F1e Cuboctahedron Circumscribed 1 

4F Stellated Octahedron Circumscribed 3/2√2 

4F1v Octahedron Circumscribed √3/√2 

4F2e Octahedron Midradius √3 

4E1e Rhombic Dodecahedron Circumscribed 1 

4E Cuboctahedron Circumscribed 2/√3 

4E1f Octahedron Circumscribed √2 

4E2v Octahedron Inscribed √3 

4E3 Rhombicuboctahedron Circumscribed 2 

   Table IV cont’d 
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Polyspheron Shape Type Radius 

5V2e Icosadodecahedron Circumscribed 1 

5V1f Icosahedron Midradius (√15+6√5)/(√14+6√5) 

5V Icosahedron Circumscribed √5/2 

5V1e Icosahedron Inscribed (√10+2√5)/(1+√5) 

5V2f Dodecahedron Circumscribed (√15-3√5)/(√5-1)(√2) 

5V3e Dodecahedron Midradius (√10-2√5)/(√5-1) 

5F5e Icosadodecahedron Circumscribed 1 

5F4v Snub Dodecahedron Inscribed (√15+6√5)/(√14+6√5) 

5F3f Dodecahedron Circumscribed 3/(2√2) 

5F2e Dodecahedron Circumscribed (√6(√3+√5))/(3+√5) 

5F1e   √3/√2 

5F Dodecahedron Inscribed 3/2 

5F1v Icosahedron Circumscribed (√15-3√5)/(√5-1)(√2) 

5F2e Icosahedron Midradius (2√3)/(√5-1) 

5E6e Dodecahedron Inscribed 1 

5E5e Rhombicuboctahedron  1/sin(2π/5) 

5E4f Rhombicuboctahedron  (√6(√3+√5))/(3+√5) 

5E3e Icosadodecahedron  2/√3 

5E2v Icosadodecahedron  (√10+2√5)/(1+√5) 

5E1f Icosadodecahedron  √3/√2 

5E Icosadodecahedron Inscribed 1/sin(π/5) 

5E1v Dodecahedron Inscribed (√10-2√5)/(√5-1) 

5E2f Rhombicosadodecahedron Inscribed (2√3)/(√5-1) 

5E3 Rhombicosadodecahedron Circumscribed 1+√5 

Table IV cont’d 
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The 3V polyspheron 

Refer to Figure 46 for the various volume states of the 3V polyspheron. I scaled the 
sizes of its harmonic notes to represent the growth in size of these polyspherons. 

3V1f 

3V 

3V1e 

Figure 46 
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I have put together a composite view of all three states of the 3V polyspheron, super 
imposed in the illustration in Figure 47, where the individual expansion steps can be 
seen relative to each other. The white arrows highlight the first expansion step (3V1e 
to 3V) as the conix move away from the center of the polyspheron. The red arrows 
highlight the second expansion step (3V to 3V1e) as the conix move even further 
from the center of the polyspheron. 

Figure 47 
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The 4V polyspheron 

Refer to Figure 48 for the various volume states of the 4V polyspheron. I scaled the 
sizes of 4th harmonic notes to represent the growth in size of these polyspherons. 

4V 

4V1f 

4V2e 

Figure 48 
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I have put together a composite view of all three volume states of the 4V 
polyspheron, super imposed in the illustration in Figure 49, where the individual 
expansion steps can be seen relative to each other. The 4V0v polyspheron is located 
at the center of image. The white arrows highlight the first expansion step (4V to 
4V1f) as the conix move away from the center of the polyspheron. Notice how what 
appeared to be a single conix split in two and moves in different directions. The red 
arrows highlight the second expansion step (4V1f to 4V2e) as the conix move even 
further from the center of the polyspheron.

Figure 49 
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The 4F polyspheron 

Refer to Figure 50 for the various volume states of the 4F polyspheron. I scaled the 
sizes of its 4th harmonic notes to represent the growth in size of these polyspherons. 

4F 

4F1v 

4F1e 

4F2e 

Figure 50 
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I have put together a composite view of the 4F1e and 4F2e polyspherons refer to 
Figure 51-52. 

Figure 51 
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Figure 52 
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The 4E polyspheron 

Refer to Figure 53-54 for the various volume states of the 4E polyspheron. I scaled 
the sizes of its 4th harmonic notes to represent the growth in size of these poly-
spherons. 

4E 

4F1f 

4E1e 

Figure 53 
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4E2v 

4E3 

Figure 54 
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5th Harmonic V-Note: The 5V polyspheron 

Refer to Figure 55 for the various volume states of the 5V polyspheron. I scaled the 
sizes of its 5th harmonic notes to represent the growth in size of these polyspherons. 

5V 

5V1e 
5V1f 

5V2f 

5V3e 

5V2e 

Figure 55 
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Refer to Figure 56-58 for various views of the 5V3e polyspheron using a do-
decaspheron model consisting of twelve metal rings.

Figure 56 



 

90 

Figure 57 
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Figure 58 
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I have put together a composite view of the 5V2e and 5V3e polyspherons refer to 
Figure 59-61.

Figure 59 
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Figure 60 
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Figure 61 
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The 5F polyspheron 

Refer to Figure 62-63 for the various volume states of the 5F polyspheron. I scaled 
the sizes of its 5th harmonic notes to represent the growth in size of these poly-
spherons. 

5F1e 5F2e 

5F3f 5F4v 

5F5e 

Figure 62 
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5F 

5F1v 

5F2e 

Figure 63 
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5th Harmonic E-Note: The 5E polyspheron 

Refer to Figure 64-66 for the various volume states of the 5E polyspheron. I scaled 
the sizes of its 5th harmonic notes to represent the growth in size of these poly-
spherons. 

5E 

5E1f 

5E4f 5E6e 5E5e 

5E3e 5E2v 

Figure 64 
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5E1v 

5E2f 

Figure 65 
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5E3 

Figure 66 
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Chapter 5: The Transformation of Polyspheron to Polyconix   

When I look at each maximum volume polyspheron, it suggests to me that they 
could be comprised of cones. I would also suggest that these cones are created as the 
conix in these polyspherons grow at a uniform rate. 

As the conix grow in size, the polyspherons grow as well, and at the same time the 
conix move away from the center of the polyspheron which traces out cone shapes 
that radiate from its center. Refer to Figure 67 to see an example of how four cones 
would be created by the expanding conix and its growing polyspheron. One cone is 
created by each conix and these polyspherons transform them into what will be 
referred to as a polyconix. There is one unique polyconix for each of the eight 
maximum volume polyspherons.  

Figure 67 
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The eight polyconix are listed in Table V. The first column lists the polyspheron at 
its maximum volume which is the basis for each polyconix. The second column lists 
the name of each specific polyconix and the third column lists the polyhedrons with 
which it shares common geometric properties. 

 

Table V 

 

In Figure 68-75 you will see how each polyspheron transforms itself into a poly-
conix.   

 

 

Polyspheron Polyconix Name Reference Polyhedron 

2V0f triconix triangular prism 

3V1e tetraconix tetrahedron 

4V2e hexaconix hexahedron 

4F2e octaconix octahedron 

4E3 predodecaconix rhombicuboctahedron 

5V3e dodecaconix dodecahedron 

5F2e icosaconix icosahedron 

5E3 tricontaconix rhombicosadodecahedron 
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2V 

Triconix 

Figure 68 
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Tetraconix 

3V1e 

Figure 69 
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4V2e 

Hexaconix 

Figure 70 
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Octaconix 

4F2e 

Figure 71 
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4E3 

Predodecaconix 

Figure 72 
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5V3e 

Dodecaconix 

Figure 73 



 

108 

5F2e 

Icosaconix 

Figure 74 
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5E3 

Tricontaconix 

Figure 75 
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Chapter 6: Fractional Harmonic Notes 

 

The harmonic notes which I have discovered so far have been based on whole 
integers where the chord angle w has the following values:  

 

For 6th harmonic, w = 2π/6 

For 5th harmonic, w = 2π/5 

For 4th harmonic, w = 2π/4 

For 3rd harmonic, w = 2π/3 

For 2nd harmonic, w = 2π/2 

 

This corresponds to Rta dividing the circumference of its conix into 6, 5, 4, 3, and 2 
equal arc segments in one rotation around the circumference of the conix. So I 
started wondering what some of the intermediate fractional values of w lead to? I 
decided to first look between the 2nd and 3rd harmonic to see what I could find. I 
thought the best place to start looking would be at the halfway point between them 

at 2π/2½, which I refer to as the 2½ harmonic. I used the general solution from 

Chapter 2 to calculate the value for Rta for w = 2π/2½.  

 

 

 

 

The resulting value for Rta is approximately equal to 1.701. 

 

Even though I had the calculated value of Rta for the 2½ harmonic conix, I didn’t 
know what pattern, if any, it would lead to. I assumed that some form of geometric 
tiling would result and that I would be guided by the natural intersection points 
where to center the next conix. This held true for the Flower of Life and all of the 
integer based harmonics discovered in the previous chapters. So I started drawing 
conix on a sphere to see where this would lead. With this length of Rta the conix was 
drawn deep into the southern hemisphere.  
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Refer to Figure 26 to see the steps I took to draw the 2½ harmonic note. After 
drawing the first conix (seen in the center of Figure 26), I made an arbitrary mark 
M1 on the conix. I moved the compass to M1 and drew the second conix, which 
intersected the first conix at a point I defined as M2. I moved the compass to M2 
and drew the third conix, which intersected the first conix at a point I defined as M3. 
I moved the compass to M3 and drew the fourth conix, which intersected the first 
conix at a point I defined as M4. The M4 marking had overshot the starting point 
M1, which alarmed me at first because the pattern didn’t seem to converge on itself 
as expected. I decided to continue on anyways. I moved the compass to M4 and 
drew a fifth conix, which intersected the first conix at a point I defined as M5. I 
moved the compass to M5 and drew a sixth conix, which intersected the first conix 
at a M1, the starting point and the pattern converged on itself. As you can see in 
Figure 76, the sequence of compass placements M1 – M2 – M3 – M4 – M5 – M1 
required two complete revolutions around the first conix and a five-pointed star is 
formed by five chords of length Rta. Refer to Figure 77 to see the corresponding 5-

petal pattern formed on the top side of the sphere. For a side view of the 2½ har-

monic note, see Figure 78.  The 2½ harmonic conix is divided into five arc segments 

in two rotations (5 chords/2 rotations = 2½) around the first conix. 

Figure 76 - Bottom view 2½ harmonic 

M2 M5 

M3 M4 

M1 

Rta 

Rta 

Rta Rta 

Rta 
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Figure 77 - Top view 2½ harmonic 

Figure 78 - Side view 2½ harmonic 

M3 M1 



 

   113 

The next obvious place to look was between the 3rd and 4th harmonic which would 

be the 3½ harmonic conix. After computing the length of the conical radius Rta I 

proceeded to construct it. The 3½ harmonic conix is divided into seven arc seg-

ments in two rotations (7 chords/2 rotations = 3½). This arrangement of seven 
conix is interconnected in an overlapping pattern similar to that of a seven-pointed 
star as seen in Figure 79 created by seven chords of length Rta. The sequence of 
compass placements M1 – M2 – M3 – M4 – M5 – M6 – M7 – M1 required two 
complete revolutions around the first conix. It’s quite interesting that the first conix 
is divided into seven equal arc segments because this cannot be done by construction 
techniques in Euclidean geometry. Refer to Figure 80 to see the corresponding 

seven-petal pattern formed on the top side of the sphere. For a side view of the 3½ 
harmonic note, see Figure 81. 

You will notice from the side views of these fractional harmonics that they do not 
fully engulf the sphere as the full integer harmonics did. The harmonic relationship is 
contained to the first conix and the additional intersection points do not appear to 
lead to an overlapping pattern. These half-note fractional harmonics require two 
revolutions around the first conix before it converges into an overlapping pattern. 

The remaining half-note fractional harmonics (4½ and 5½) are illustrated on the 
following pages.

Figure 79 - Bottom view 3½ harmonic 

M1 

M2 

M3 

M4 

M5 

M6 

M7 

Rta 

Rta 

Rta 

Rta 

Rta 

Rta 

Rta 
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Figure 81 - Side view 3½ harmonic 

Figure 80 - Top view 3½ harmonic 
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Refer to Figure 82 to see how the 4½ harmonic conix is divided into nine arc seg-

ments in two rotations (9 chords/2 rotations = 4½). The bottom and side views can 
be seen in Figure 83-84. 

 

 

 

 

 

Figure 82 - Top view 4½ harmonic 
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Figure 83 - Bottom view 4½ harmonic 

Figure 84 - Side view 4½ harmonic 
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Refer to Figure 85 to see how the 5½ harmonic conix is divided into eleven arc 

segments in two rotations (11 chords/2 rotations = 5½).  

This covers all four of the half-note fractional harmonics.  

 

 

Figure 85 - Top view 5½ harmonic 



 

118 

I suspected there would be more fractional harmonics to find and the next place I 
looked was at the one third points between the 5th and 6th harmonic note. I wasn’t 
disappointed and as I suspected they required three revolutions before the pattern 

converged. Refer to Figures 86-89 for illustrations of the 5⅓ harmonic and the 5⅔ 
harmonic notes.  

As seen in Figure 86, the 5⅓ harmonic conix is divided into sixteen arc segments in 

three rotations (16 chords/3 rotations = 5⅓). Refer to Figure 87 for a side view of 

the 5⅓ harmonic note.  

 

 

 

Figure 86 - Top view 5⅓ harmonic 
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Figure 87 - Side view 5⅓ harmonic 
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As seen in Figure 88, the 5⅔ harmonic conix is divided into seventeen arc segments 

in three rotations (17 chords/3 rotations = 5⅔). Refer to Figure 89 for a side view 

of the 5⅔ harmonic note.  

 

Figure 88 - Top view 5⅔ harmonic 
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Figure 89 - Side view 5⅔ harmonic 
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I have cataloged these fractional harmonics in Table VI, in ascending order of the 
conical radius Rta.  

 

 

 

I started to notice a numeric progression in the chord angle w used for these frac-
tional harmonic notes. To best represent this numerical progression, the entries in 
Table VI are inverted and listed in the same order in Table VII. These values repre-
sent the chord angle w/2 which was used in the general solution (E5).  

 

 

 

 

 

 

The values in Table VII now better describe the unique harmonic properties of each 
fractional harmonic note. The denominator indicates how many arc segments the 
conix is divided into, and the numerator indicates how revolutions around the conix 
are required. The half-note entries (numerator =2) are considered to have a depth of 
two. The one-third-note entries (numerator =3) are considered to have a depth of 
three. Refer to Table VIII for a complete collection of harmonics up to a depth of 

six. I’m not sure that I would have the patience to construct the 5⅚ harmonic. This 
is table entry 6/35, where the conix is divided into 35 arc segments in six rotations 
around the conix. However, I could predict its conical radius from the general 
solution.    

6    5  4  3  2  

  5½   4½  3½  2½   

 5⅔  5⅓         

1/6    1/5  1/4  1/3  1/2  

  2/11   2/9  2/7  2/5   

 3/17  3/16         

Table VI 

Table VII 
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#

1/
2

1/
3

2/
3

1/
4

3/
4

1/
5

2/
5

3/
5

4/
5

1/
6

5/
6

2/
7

3/
7

4/
7

6/
7

3/
8

2/
9

4/
9

5/
9

3/
10

2/
11

3/
11

4/
11

5/
11

6/
11

3/
13

4/
13

6/
13

3/
14

5/
14

4/
15

3/
16

5/
16

3/
17

4/
17

6/
17

4/
19

5/
19

6/
19

4/
21

5/
21

4/
23

6/
23

5/
24

6/
25

5/
26

5/
29

6/
29

6/
31

6/
35

Table VIII – List of Fraction Harmonic of a Rotational Depth of 6 
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Chapter 7: Beyond the 2nd Harmonic 

 

Up to this point I have only explored the harmonic relationships between the 6th and 
2nd harmonics, including several fractional harmonics. The chord angle w/2 was 
limited to the range between π/6 and π/2 and the conical radius Rta had a range 
between 0 and √3. So what could by lying outside this range? In order to better 
understand this I decided to plot the general solution for the conical radius Rta 
versus the chord angle w/2. When I started plotting the values of the chord angles 
from Table VIII I found that for values larger than 5π/6 the general solution was 
undefined or invalid. For a chord angle w/2 equal to 5π/6 the conical radius Rta was 
equal to zero, just as it was for π/6. This established the range of the chord angle 
w/2 to between π/6 and 5π/6. This can be seen in Plot1. You will notice the sym-
metry around a chord angle w/2 of π/2. The harmonics that have been described in 
earlier chapters are the primary harmonics (π/6 - π/2). The harmonics with a chord 
angle w/2 in the range between π/2 and 5π/6 are the secondary harmonics. . Refer 
to Table IX to see how the secondary harmonics alias to the primary harmonics.    

 

 

 

 

 

 

 

 

 

 

 

 

 

There is one more category of conix that hasn’t been covered yet. All of the conix 
explored so far has their conical radius in the range between 0 and √3. When the 
conical radius Rta exceeds a length of √3 (but less than 2) the conix no longer inter-
sect and the harmonic relationship is lost. This is known as the non-harmonic range 
which is the lower section of the sphere seen in Figure 90. I have attempted to draw 
a few of these non-harmonic arrangements of conix however since the conix are not 
directly coupled no immediate pattern was visible. I hope explore this in more detail 
at a later time.

Plot 1 

w/2 

Rta 

Rba 

π/6  π/5  π/4        π/3           π/2          2π/3            3π/4   4π/5  5π/6  

 

 π/6  

 

 

 

 

 

 π/6  
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Harmonic Chord Angle Chord Angle Harmonic 

6 π/6 5π/6 1⅕ 

5½ 2π/11 9π/11 1²⁄₉ 

5 π/5 4π/5 1¼ 

4½ 2π/9 7π/9 1²⁄₇ 

4 π/4 3π/4 1⅓ 

3½ 2π/7 5π/7 1⅖ 

3 π/3 2π/3 1½ 

      Primary Harmonic                      Secondary Harmonic 
      Table IX 

⅚ 

⅕ 

¼ 

⅓ 

½ ½ 

⅔ 

⅘ 

¾ 

⅙ 

?/? ?/? 

Figure 90  
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Chapter 8: Relationship between the Antipodal Conical Radii  

Geometrically, there is a straight forward relationship between both conical radii Rta 
and Rba as seen in Figure 1 of Chapter 1.  

4R2 = (Rta)
2 + (Rba)

2 

However, by and in large they each have a separate geometric relationship with the 
conix and sphere. I found this out first hand when I tried using conical radius Rba 
back in Chapter 2 to construct the 3rd harmonic note and the conix didn’t converge. 
I happened to find a few exceptions to this which I will describe. 

Sometime after constructing the 2½ harmonic, I started to inspect it in more detail 
and noticed that there were some conix intersection points that I could have used to 
center new conix, refer to Figure 91. In fact I probably didn’t even look for these 
intersection points because from past experience of drawing fractional harmonics, 
these additional conix didn’t converge. However, in this case these new intersection 

points created another 2½ harmonic on the south side of the sphere and in doing so 
actually formed the identical pattern of a 5th harmonic note, refer back to Figure 10 
in Chapter 1. Refer to Figure 92-94 for a composite view of the combination of two 

2½ harmonic notes (one colored red and one colored green). I did not expect to see 

this serendipitous result which equates to one 2½ harmonic plus another 2½ har-

monic equals a 5th harmonic note (2½ + 2½ = 5). 

Figure 91 - Side view 2½ harmonic 

M3 M1 
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In Figure 92 you can see a top view of one green 2½ harmonic. 

 

Figure 92 – Top view 2½ + 2½ harmonic 
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In Figure 93 you can see a side view with the green 2½ harmonic on the top and a 

red 2½ harmonic on the bottom.  

Figure 93 – Side view 2½ + 2½ harmonic 
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In Figure 94 you can see a bottom view of one red 2½ harmonic. 

Figure 94 – Bottom view 2½ + 2½ harmonic 
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I now realize the mistake I had made when I first drew the 2½ harmonic. I had 

drawn many other fractional harmonics prior to the 2½ harmonic and when I tried 
centering new conix on the other intersection points, there was no pattern conver-

gence. For example in the 5⅓ harmonic (refer back to Figure 87) there were 112 
intersection points and when I attempted to add new conix the pattern started to get 

quite messy. That being said, I wrongly made the assumption for the 2½ harmonic 
that the other intersection points would not lead to anything. 

Then just by chance, I had noticed that the value for the conical radius Rta of the 2½ 
harmonic was equal to the conical radius Rba of the 5th harmonic. What is surprising 
is that this is the only pair of harmonics that I could find that have this unique 
relationship (i.e. Rba of one harmonic equal Rta of another). It turns out that the 

conix of the 2½ harmonic and the 5th harmonic are the same size (i.e. their planar 
radius Rp are equal), but the way they are drawn is quite different. For the 5th har-
monic, the compass was placed on the north pole and the conix was drawn in the 

northern hemisphere. While for the 2½ harmonic, the compass was placed on the 
north pole and the conix was drawn in the southern hemisphere and it took two 
revolutions before the conix converged, yet the pattern was identical.  
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I found one other unexpected relationship as I was analyzing other harmonics to see 
what would happen if I used the conical radius Rba instead of Rta. The 4th harmonic 
conix was the first placed I looked but quickly realized that for this conix, Rta was 
equal to Rba so there was nothing to be found here. I did spend some time investigat-
ing the 3rd harmonic, but the use of conical radius Rba did not result in any pattern 
convergence.  

The two conical radii of the 2nd harmonic note have a unique relationship between 
themselves. Conical radius Rta is equal to √3 and Rba is equal to 1. Three new conix 
of conical radius Rba can be added to the 2nd harmonic note. These new conix are 
centered at the point where two conix abut in the 2nd harmonic note and interleave 
perfectly, refer to Figure 95-96. It immediately struck me that these six conix divide 
the sphere’s equator into six equal arc segments.  

Figure 95 
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At first this didn’t seem that significant. In fact, it wasn’t until the next day that I saw 
how significant this was. I was drawing on a unit sphere (one inch radius R) and I 
was using a unit conix (conical radius equal to one inch) to divide the equator into 
six equal arc segments. This is analogous to the relationship seen in Euclidean geom-
etry where a unit circle is divided into six equal arc segments by its radius which is 
equal to 1. In spherical geometry, a unit sphere’s equator is divided into six equal arc 
segments by a unit conix where its conical radius is equal to 1.  

In addition to this, a smaller conix of planar radius rp equal to ½ fits perfectly in the 
spherical hexagon created around the north and south poles. The corresponding 
conical radius of these smaller conix are rta equal to √(2-√3) and rba equal to √(2+√3). 
Refer to Figure 97.  

  

  

 

 

Figure 96 
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Appendix I: Harmonic Chords Created from Harmonic Notes 

Numerous harmonic notes have been illustrated in the previous chapters. This 
provides a rich selection to choose from to compose what is referred to as a har-
monic chord, which is a combination of two or more harmonic notes. I have not yet 
attempted to compose harmonic chords from different harmonics, but I suspect 
some compositions are possible. 

With twenty three harmonic notes to choose from in the 5th harmonic alone results 
in millions of possible harmonic chord compositions. Only a few have been illustrat-
ed on the following pages. 

Other than its innate geometric beauty, there is nothing more to be said about 
harmonic chords. Perhaps sometime in the future more will be discovered regarding 
these harmonic chords. 

The following notation represents a 5th harmonic chord with note 5V and 5V2f. Refer 
to Figure 98 for view that is aligned with the vertices of the icosahedron. 

[ 5V:5V2f ] 

  

Figure 98 
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The following notation represents a 5th harmonic chord with notes 5V, 5V2f and 
5F2e. Refer to Figure 99 for a view that is aligned with the vertices of the icosahe-
dron. 

[ 5V:5V2f:5F2e ] 

 

 

 

 

 

 

 

 

 

Figure 99 
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 Here is a random assortment of some other harmonic chords.
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Appendix II: Harmonic Scales and Ratios   

Given the rich collection of conix in the various 5th harmonic intervals, I was curious 
what relationships may exist between them. I started by placing each interval of 
conix in a co-centric arrangement on a sphere, as seen in Figure 100-102. A compo-
site image of all intervals (V-note, F-note and E-note) can be seen in Figure 103. 
There was no obvious pattern evident at first inspection. The pattern did not appear 
to be random and there was some grouping or clustering among the conix.  

Using a compass, I measured the conical radius of each conix and put them in a 
spreadsheet for a quick analysis. I programmed the spreadsheet to perform various 
comparisons of the conix. I had already discovered a harmonic relationship between 
the conix and sphere for each harmonic note, so perhaps there was some harmony 
between the conix of different notes. My first hunch was to look for ratios that 
would be similar to that of a music scale, of which there are many. I knew my meas-
urements were imprecise, but I felt they were accurate enough to detect a trend. 

To extract the ratios, I would set one conix as the tonic (ratio of 1). Then I would 
divide the next smaller conix by the tonic, and so on, just as would be done for a 
musical scale. The results were a little inconclusive, but there was a hint or sugges-
tion of some fragments of ratios which were similar in nature to those found in a 
diatonic or chromatic scale.  

This piqued my interest, but I knew that in order to extract the exact ratios I would 
need to derive the geometric properties of each conix. This seemed a little daunting 
at first, but I thought I had enough information to proceed. The actual geometric 
derivations can be found in my book “Sphere of Life VI” in Appendix VII. 
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Figure 100 
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Refer to Figures 101 for a view of the 5th harmonic F-interval. 

Figure 101 
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Refer to Figures 102 for a view of the 5th harmonic E-interval. 

Figure 102 
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Refer to Figures 103 for a composite view of all three 5th harmonic intervals. 

Figure 103 
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Now I had some raw, but precise ϴ-based data to work with. Since I didn’t know 
where to start looking, I calculated the ratios of every pair of conix and searched the 
results for simple ratios in this sea of complexity.  

To my amazement, a few simple ratios did surface which were small integer fractions 
of π. The conix involved were all contained in the E-interval [ 5E6e – 5E3e – 5E1e – 

5E ]. If I set 5E6e as the tonic conix, I get the following angle-based scale (ϴ-scale). 
See Table X. 

V  
Interval 

H  
Interval 

E  
Interval 

ϴ ϴ-scale  Ω Ω-scale 

5V2e 5F5e 5E6e π/2 1  π/4 5:8 

5V1f 5F4v       

  5E5e 2π/5 4:5  3π/10 3:4 
 5F3f       
 5F2e 5E4f      

5V        
  5E3e π/3 2:3  π/3 5:6 

5V1e  5E2v      
 5F1e 5E1f      

 5F       

5V2f 5F1v       

  5E π/5 2:5  2π/5 1 

5V3e  5E1v      
 5F2e 5E2f      

Table X - ϴ and Ω Scales 
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Here’s an example of a “just interval” (or just intonation, in which the frequencies of 
notes are related by ratios of small whole numbers). Notice some identical ratios 

from the ϴ-scale: 

 

[ 1  –  15:16 –  8:9 – 5:6  – 4:5 – 3:4 –  32:45 – 2:3 – 5:8 –  3:5 – 9:16 –  8:15 -  1:2 ] 

[ C       Db       D      Eb      E       F       Gb       G       Ab      A       Bb      B     C2 ] 

 

Here’s how this ϴ-scale would look in the key of C based on the “just interval” seen 

above. I have assigned the corresponding notes from the interval to each ϴ-scale 
ratio as seen in red. Three of these E-interval ratios were an exact match of the ratios 
found in a “just interval”.  

 

[1 - 4:5 – 2:3 – 2:5] 

[C   E     G     E2] 

 

Now I will take the same four conix above, and instead of using the spherical angle 

ϴ, I would use the corresponding conical angle Ω and extract another set of ratios. 

See Table X. This resulted in the following scale (Ω-scale).  

Here’s what the Ω-scale would look in the key of C based on the on the “just inter-
val” seen above. I have assigned the corresponding notes from this interval to each 

Ω-scale ratio. 

[ 5:8 – 3:4 – 5:6 – 1 ] 

[ Ab      F      Eb   C ] 

 

This was another direct hit on four of the above musical scale ratios. I noticed that 

the ϴ-scale and Ω-scale dovetail together nicely and form the following combined 

scale (ϴΩ-scale). I did take some liberty in dovetailing these two scales. Perhaps it’s 
just a striking coincidence, only the future will tell. 

[ 1  –  15:16 –  8:9 – 5:6  – 4:5 – 3:4 –  32:45 – 2:3 – 5:8 –  3:5 – 9:16 –  8:15 -  1:2 ] 

[ C       Db       D      Eb      E       F       Gb       G       Ab      A       Bb      B     C2 ] 

 

The Ω-scale and ϴ-scale contain some of the exact ratios found in the “just interval”  

I should point out that the similarities between the ratios of conix and those in a 
music scale are only my observations. I don’t know if this infers a deeper relation-
ship between conix and music, or if this is just a coincidence. 
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The angle based scales (ϴ-scale and Ω-scale) were simple ratios of the spherical and 
conical angles of conix from the E-interval. I also discovered some other ratios that 
have a slightly more complicated relationship which can be represented by simple 
trigonometric equations, but they were elusive!  

By deriving cosines of the various conix and extracting their ratios, simplicity surfac-
es again. These ratios can be described as simple fractions of small integers and 
square roots. This cosine-scale is captured in Table XI along with the sin-scale and 
tan-scale in Table XII-XIII. Discovering these ratios was made possible because I 
had derived the spherical angle for each conix as simple trigonometric values. 

The transformation function used to create these ratios is described in the following 
notation: 

cos(5F3f(ϴ)) 

 

This is the cosine of the spherical angle of the 5th harmonic F-note 5F3f. 

I must confess I have no idea if there is any significance to these ratios, but in a sea 
of complexity it is nice to see some simplicity surface. To be honest, I don’t know 
what led me to discover this relationship. 

 

 

V  
Interval 

H 
Interval 

E  
Interval 

ϴ cos-scale 

5V2e 5F5e 5E6e   

5V1f 5F4v    

  5E5e   
 5F3f  cos-1(1/3) 1/√5 
 5F2e 5E4f   

5V   cos-1(1/√5) 3/5 
  5E3e cos-1(1/2) 3/2√5 

5V1e  5E2v   
 5F1e 5E1f cos-1(1/√3) √3/√5 

 5F  cos-1(√5/3) 1 

5V2f 5F1v    

  5E   

5V3e  5E1v   
 5F2e 5E2f   

Table XI - Cosine Scale 
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V  Interval H  Interval E  Interval ϴ sin-scale 

5V2e 5F5e 5E6e   

5V1f 5F4v    

  5E5e   
 5F3f  sin-1(2√2/3) 1 
 5F2e 5E4f   

5V   sin-1(2/√5) √3/√2√5 
  5E3e sin-1(√3/2) 3√3/4√2 

5V1e  5E2v   
 5F1e 5E1f sin-1(√2/√3) √3/2 

 5F  sin-1(2/3) 1/√2√3 

5V2f 5F1v    

  5E   

5V3e  5E1v   
 5F2e 5E2f   

Table XII - Sine Scale 
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There were two tangent scale discovered. One was based on simple fractions and 

roots, while the other was based on the golden mean ψ. 

 

 

 

 

V  Interval H  Interval E  Interval ϴ tan-scale ψ-scale 

5V2e 5F5e 5E6e    

5V1f 5F4v     

  5E5e    
 5F3f  tan-1 (2√2) 1  
 5F2e 5E4f tan-1(ϕ+1)  1 

5V   tan-1 (2) 1/√2  
  5E3e tan-1(√3) √3/2√2  

5V1e  5E2v tan-1(ϕ)  ψ-1 
 5F1e 5E1f tan-1(√2) 1/2  

 5F  tan- 1(2/√5) 1/√2√5  

5V2f 5F1v  
tan-(2(ϕ-1)/ϕ)  2/ (ψ+1)2 

  5E    

5V3e  5E1v 
tan-1(ϕ-1)  (ψ-1)/ (ψ+1) 

 5F2e 5E2f 
tan-1((ϕ-1)/ϕ)  1/ (ψ+1)2 

Table XIII - Tangent Scale 
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I’m not sure how I came across the following scale, it just kind of surfaced from my 
number crunching efforts and I recognized something peculiar. Instead of using the 

angle based value of the conix 5V(ϴ ), I computed the length of the conical radius 
for Rta 5V(Rta ), and then I extracted the length-based ratios. No simple fraction 
based ratios could be found. However it turned out that the ratios could be de-
scribed as simple functions instead of a fractional ratio. These ratios were equivalent 

to the sine of the spherical angle ϴ of some other conix. This ratio could be de-
scribed with the following notation: 

 

Refer to the following Table XIV for the other conix in this category. I also found a 
few other traces of similar ratios of other conix, but I had reached the limit of effec-
tiveness of my number crunching technique and I would need to fine tune it to find 
more ratios. I’ll address this more detail in a future publication. I suspect that there 
are several more undiscovered/hidden ratios yet to be found. 

 

 

V  
Interval 

H  
Interval 

E  
Interval 

Rta Ratio Scale 

5V2e 5F5e 5E6e   

5V1f 5F4v    

  5E5e 5E5e(Rta)/5E5e(Rta) 1 
 5F3f  5F3f(Rta)/5E5e(Rta) sin(5V1f(ϴ)) 
 5F2e 5E4f   

5V   5V(Rta)/5E5e(Rta) sin(5V(ϴ)) 
  5E3e 5E3e(Rta)/5E5e(Rta) sin(5V1e(ϴ)) 

5V1e  5E2v   
 5F1e 5E1f   

 5F  5F(Rta)/5E5e(Rta) sin(5V2f(ϴ)) 

5V2f 5F1v    

  5E 5E(Rta)/5E5e(Rta) sin(5V3e(ϴ)) 

5V3e  5E1v   
 5F2e 5E2f   

Table XIV - Complex Scale 
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Appendix III: Incremental Sub-Notes within Harmonic Intervals 

I have also explored making some slight alterations to some of the harmonic notes. 
See Figure 104-106 for examples of a half step between 5V and 5V1f viewed from 
the vertex, edge and face respectively. 

 

 

Figure 104 
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Figure 105 
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Figure 106 
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See Figure 107-109 for examples of a half step between 5V and 5V1e viewed from 
the vertex, face and edge respectively. Notice that it also suggests a 62-sided solid 
(also known as a rhombicosidodecahedron). 

 

 

 

Figure 107 
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Figure 108 
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Figure 109 
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A harmonic arrangement can be created from an arrangement of several fractional 
steps. See an example of a 9-step arrangement between 5V to 5V3e in Figure 110. 

 

 

 

 

  

 

 

Figure 110 
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 Appendix IV: Harmonic Inspired Art  

Here are a few examples of  some art works that is inspired by the 5th harmonic 
notes. 
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Appendix V: Polyconix Evolution 

The arrangement of cones in each polyconix is an excellent example of form and 
function working together and creating something which is more than the sum of its 
parts. The adjacent cones in these polyconix are fully abutted in a stable arrangement 
that is secured in place by attractive forces. The cones have a form of geometric 
memory which allows the cones to almost self-assemble into the original polyconix.   

What I also find remarkable is that groups of these free cones can bind together in 
many other ways than its original polyconix. I will explore some of these shapes 
using a hexaconix as an example. Six cones comprise a hexaconix and the cones are 
physically identical and as a result any six hexaconix cones will be able to create a 
hexaconix. There are a few small sub-component shapes consisting of a few hexaco-
nix cones that have a relatively strong bond between cones. Refer to Figure 111-114 
to see a random collection of single cones and sub-components.  

I’m not implying any physical theory based on these shapes. This is just an example 
how this simple geometric model can evolve into more complex shapes from conix 
and cones. 

All of the shapes illustrated in this Appendix were created with a construction set 
(Patent Pending 13/199,998) to model some random shapes.   
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Patent Pending 13/199,998 

Figure 111 Figure 112 
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Figure 114 

Figure 113 

Patent Pending 13/199,998 

Patent Pending 13/199,998 



 

164 

These sub-components make good building blocks for larger more complex shapes.  
In Figure 115-117, you will see a simple example of how a flat sheet can be created 
from several hexaconix cones. An unlimited number of hexaconix cones can from 
very large structures. 

Figure 115 

Figure 116 

Figure 117 

Patent Pending 13/199,998 

Patent Pending 13/199,998 

Patent Pending 13/199,998 
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In these next examples, large rings and organic-like structures are illustrated in 
Figure 118-119.

Figure 118 

Figure 119 

Patent Pending 13/199,998 

Patent Pending 13/199,998 
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Hexaconix can be assembled with their cones' apexes pointing inwards or outwards 
refer to Figure 120. The inward pointing cones creates the basic hexaconix shape, 
which shares the geometric properties of a hexahedron. The outward pointing cones 
define a shape that shares the geometric properties of an octahedron, the dual of a 
hexahedron. Pyramid-like shapes can be created by the arrangement of hexaconix 
cones seen in Figure 121-122.

Figure 120 

Figure 121 Figure 122 

Patent Pending 13/199,998 

Patent Pending 13/199,998 Patent Pending 13/199,998 
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Hexaconix can also bond with other hexaconix in a few different ways, refer to 
Figure 123-125. In this way, long strings or tight lattice structures can result. The 
arrangement of hexaconix illustrated in Figure 123 would be a flexible structure, 
while the arrangement illustrated in Figure 124 would be a more rigid structure. 

 Figure 123 

Figure 124 

Patent Pending 13/199,998 

Patent Pending 13/199,998 
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Figure 125 

Patent Pending 13/199,998 
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When the cones are truncated, hexaconix rings are created. These hexaconix rings 
are capable of creating even more complex shapes. Refer to Figure 126-128 to see 
the basic hexaconix shaped formed from hexaconix rings viewed from three differ-
ent perspectives. Referring to the reference hexahedron, Figure 126 represents a 
view from its vertices axes, Figure127 represents a view from its edge axes and 
Figure 128 represents a view from its face axes. The universe now consists of a vast 
number of polyconix, polyconix cones, polyconix rings and other more complex but 
less stable shapes. See the following Figures 129-136 for a small sample of possible 
shapes that could result from the vast sea of hexaconix rings and cones.  

Figure 126 Figure 127 

Figure 128 

Patent Pending 13/199,998 Patent Pending 13/199,998 

Patent Pending 13/199,998 
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Figure 131 

Figure 129 Figure 130 

Patent Pending 13/199,998 

Patent Pending 13/199,998 

Patent Pending 13/199,998 
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Figure 132 

Figure 133 

Patent Pending 13/199,998 

Patent Pending 13/199,998 
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Figure 134 

Figure 135 Figure 136 

Patent Pending 13/199,998 

Patent Pending 13/199,998 Patent Pending 13/199,998 
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Figure 137 

Figure 138 

Patent Pending 13/199,998 

Patent Pending 13/199,998 



 

174 

Figure 139 

Figure 140 

Patent Pending 13/199,998 

Patent Pending 13/199,998 
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Figure 141 

Figure 142 

Patent Pending 13/199,998 

Patent Pending 13/199,998 
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Figure 143 

Figure 144 

Patent Pending 13/199,998 

Patent Pending 13/199,998 
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