pd-Hybridization And The Electron Geometry Of Fluorine, Neon, And Iron

Arnie Benn, Quantum Bicycle Society, California, USA (ORCID ID: 0000-0002-3753-7309)
John G. Williamson, Quantum Bicycle Society, Scotland, UK (ORCID ID: 0000-0001-9827-0735)
March 2024

ABSTRACT:

In this paper, the hybridization of atomic orbitals is considered through the lens of an extended
relativistic quantum mechanics that we call ‘sub-quantum mechanics.” Building upon earlier
work, it is proposed that, in addition to the electrostatic driving force, the mechanisms behind
electron pair formation, Pauli Exclusion, and Hund’s Second Rule are strongly influenced by the
ways in which the components of electron spin affect composite atomic orbital states. These
states can be either bosonic, as in the case of the di-electron and the proposed full shell
configurations of neon and argon, or fermionic, as in the case of a hybridized boron atom. In
addition, it is proposed that the repulsive interactions between di-electron and unpaired electron
orbitals can cause the latter to become extended radially outward from an atomic valence shell.
In this paper, the consequences of such a topological shift will be considered in the cases of
fluorine and iron. The concept of hybridization between p- and d-orbitals, which first arises in
the case of the transition metals, is also introduced. These pd-hybridized electron geometries
may, in turn, help us to account for various elemental magnetic properties and periodic trends.
Further, the specific electron geometry proposed for the iron atom may help to explain the nature
and mechanism behind ferromagnetism, as well as how this mechanism might relate to both the
above-mentioned orbital extension and fluorine’s very high reactivity.

Keywords:
orbital, hybridization, spherical harmonic resonance, relativistic quantum mechanics, quantum

chemistry, boron, scandium, iron, fluorine, neon, argon, ferromagnetism



1. INTRODUCTION

When electrons occupy the same atomic shell, they cannot ignore each others’ influences,
and they will resonate together into the most stable and symmetrical single stationary electron
wave structure that they can. This means that orbitals generated via the excitation of a single
electron atom can only be first approximations of the correct collective electron states of
multi-electron atoms or molecules. The same is therefore true of the computational models based
upon these approximations.

Hybridization states, for example sp’, sp’, and sp’d’, have long been discussed in the
context of molecular geometry. These three manifest trigonal, tetrahedral, and octahedral
electron domain symmetries respectively. The forces that shape these forms may be considered
to have two main aspects. The first aspect is primarily electrostatic in simple cases, although
elements of electromagnetics arise as orbital spin is introduced. Electron repulsion causes orbital
lobes — the structural elements within the overall wave structure that holds the electron density
— to move as far apart as the atomic geometry will allow.

The second aspect lies in quantum mechanics, in general, and in quantum spin, in
particular. Spin influences structure in two main ways. The first is in the overwhelming force
normally referred to as the Pauli Exclusion principle, which prevents two fermions from
occupying the same state. When they have ‘opposite spin’ [4], however, they not only can pair
up, they do so most readily. The second force is of particular relevance here and, though weaker,
may be thought of as a sort of “inclusion” principle. This is the propensity for fermions to form
symmetric and spherically harmonic sets, whether as opposite-spin electrons merging into
di-electrons (electron pairs), or when as same-spin (degenerate) electrons merging into what we
might consider a single, composite fermionic state.

Paired states are denoted di-fermions, and are often bosonic if quantum choices are
limited. Examples of this include “Cooper pair” di-electrons in superconductors, the
di-proton-di-neutron state of the alpha particle, and the di-electron-di-proton-di-neutron state of
the helium atom. More complex coherent states, whether bosonic or fermionic, may also arise,
and it is proposed that such states may be responsible for the shell structures of more massive
elements, as observed in nature. In particular, it is claimed that this may be the driving force
behind hybridization itself.

This paper is primarily concerned with three main things:

The first is a closer look at the spin-interaction geometries of degenerate electrons in a
hybridized atomic shell, those resulting in the lower energy states described in Hund’s Second
Rule. This occurs first in the cases of boron and carbon.

The second is a conjecture about how di-electron orbitals might affect unpaired electron
orbitals within the same shell, by causing them to become constricted laterally, and therefore
somewhat extended, radially. Such an orbital extension would take with it the electron’s
properties of charge, field, and spin.

The third is a conjecture about the form of hybridization that occurs in the d-block
transition elements, namely pd-hybridization. It is proposed that this hybridization involves only



the p- and d-orbital electrons, allowing optimal symmetries to form without the need to include
the 3s* di-electron. That di-electron can then remain as a type of ‘fundamental’ resonance for the
3" shell, within which (or upon which) the pd-hybrid orbitals resonate as superimposed
harmonics. Such an s-orbital resonance may in fact serve to stabilize and symmetrize the 3™ shell
structure as a whole into a coherent quantum wave structure.

It is proposed that the electron geometries that result from this consideration of
pd-hybridization may help to explain the physical mechanisms behind several observed chemical
and magnetic properties in atomic and metallic systems, not least among them, the paramagnetic
strength trend across the periodic table. It is further proposed that, along with the concept of
orbital constriction and extension mentioned above, these pd-hybrid geometries may help to
explain the mechanism of the iron atom’s strong ferromagnetism.

2. SUB-QUANTUM ORBITALS

This approach differs from traditional approaches in that orbitals are conceptualized
through a different paradigm — the absolute relativistic sub-quantum mechanics developed by
Williamson and van der Mark [1,2,3], and reflected in the related mathematical framework
according to the Williamson equation. This equation, %,E,=0, employs a Clifford-Dirac algebra
in order to represent an absolute relativistic set of coupled linear differential equations that allow
each aspect of a quantum system’s energy to be identified discretely in wave function modeling
[2].

While spherical harmonics are successful in describing the electron distribution within
the hydrogen atom, it does not work as successfully in multi-electron systems. This is because
electrons interact with one another on multiple levels — charge, field, and spin. Further, their
spin interactions appear to occur in three separate phase relationships: the intrinsic photon
angular momentum, the rotating photon topology’s angular momentum in an orthogonal
direction, and the overall tumbling structure in the second orthogonal direction [4]. These aspects
of spin exist in a perfect phase-locked harmony in the ratio 4 : 24 : A.

As such, a new approach is sought that combines electrons in symmetrical, phase-locked
stationary wave structures, and that also takes into account the interactions between their
charges, fields, and spins that will seek their lowest energy interaction state.

It is not possible to imagine such lower energy states if the nature of the interactions
themselves are not understood, conceptually, at the sub-quantum level. As such, the sub-quantum
mechanics approach [2] opens a window into the subatomic particle realm that was previously
inaccessible.

All stable quantum structures must be resonant, coherent, quantized, harmonic systems.
This is because, at their core, they are photon wave topologies. Stationary waves have structural
elements that appear to remain stationary, even as energy is flowing continuously and
symmetrically throughout the system. So too it must be with electrons in orbitals. They are not so
much orbiting but rather inhabiting a shared wave topology in perfect phase with one another...



indistinguishable from one another when they are degenerate. Together, they constitute a single
atomic quantum state. It is therefore not useful to think of the electrons in an interacting state by
comparing them to that same multiple of non-interacting electron states. These states are simply
of a different nature.

Within an atomic shell, it is proposed that electron interactions will be dominated by
whether the electrons are unpaired, unpaired while spin-bonding [4], or in the paired di-electron
state [3]. It is proposed — and seems self-evident — that: a spin-bonding electron will require
higher ionization energy to remove than an unstabilized unpaired electron; an electron from a
di-electron resonance will require an even higher ionization energy to remove; an electron from a
full shell resonance will require the most ionization energy. At first glance, that appears
consistent with the ionization energy trend across the periodic table [9], though this is not
conclusive of anything on its own.

It is well known that di-electron orbitals repel more strongly than unpaired electron
orbitals. This concept will be applied in describing possible electron orbital symmetries that
result from hybridization in the second row and transition metal elements. However, specific
wave function modeling of each will be left for future work.

3. sp’-HYBRIDIZATION

3.1: Hybridization

Boron (B) has an electron configuration of 1s*2s*2p'. With five electrons, it is the first
atom to contain electrons that are in a p-orbital. This is not a sphere-shaped harmonic in a
single-electron hydrogen atom, and so a single electron in a p-orbital cannot find a symmetrical
arrangement around a sphere by itself.

Boron therefore cannot simply add its p-electron into the same (2s*) configuration that
beryllium (Be) has, as imagined in figure 1 (below, right), because it would not be stable. If an
electron spent half of its wavelength in one lobe and half in the opposite lobe, ‘zittering’ back
and forth across the atom, it would also not be stable. Stable electron waves require a spherical,
in-phase, and ‘stationary’ symmetry.

p-orbital shapes Unhybridized Boron
Fig. 1: The p-orbital lobes (left).



The asymmetry of boron’s 5th electron therefore causes the two paired electrons in the 2s
orbital to uncouple from their di-electron state in order to form a fermionic tri-electron state with
the single p-electron. This not only allows all three electrons to equilibrate their energy, but also
puts these identical, indistinguishable electrons into a single resonant harmonic wave. An
sp’-hybridization results. While, for two of the three electrons, this represents an increase in
energy, the collective state compensates by allowing for an energy-lowering that is much more
significant.

Although it may be convenient to think of this as involving the s-orbital and two of the
three p-orbitals of the 2™ shell, it is, in fact, three new equal-energy (degenerate) orbitals. They
allow the electrons to achieve maximum stability by assuming a triangular (trigonal planar)
arrangement around the core electron shell. This minimizes repulsion by having the electrons as
far from one another as they can get, as well as stabilizing all three into a coherent, spin-linked
harmonic state through the energy lowering of Parallel Spin Bonding (PSB) [4].
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Fig. 2: The orbital diagram for boron. The large empty wireframe (above, right) indicates the
boundary of the 2" shell [7].

Note carefully that the small spheres within the 2™ shell in figure 2 (above, right) simply
indicate the directions of maximum electron density. The actual orbital shapes will be more like
three equal longitudinal sections of the shell or sphere (see fig. 3 below). We might imagine that
each orbital occupies one third of the volume of the shell, though not uniformly, as electron
density will have a maximum at the center of the orbital and will decrease towards the orbital
boundary due to electron repulsion. But electron density will nonetheless fill the entire shell in
order to shield the positive charge of the nucleus in every direction.

Fig. 3: The orbital diagram for boron, showing the three 2" shell degenerate orbitals as equal
longitudinal slices




We might equally well consider the spin-bonding unpaired electron orbitals to be
overlapping in ‘spin space’ [3], as shown in figure 4 below. In such a case, each electron in the
tri-electron state resonates through half of the shell’s volume at a time, while overlapping in the

trigonal fashion depicted.

Fig. 4: Boron's three 2sp’-orbitals surrounding a 1s° core di-electron shell (top left), shown with
overlapping sub-orbitals (top, right) [7], and as a spherical harmonic (bottom) in which the blue
(or tan) color represents the non-zero nodes in the wave structure.

In either case, each of the three hybrid orbitals contains one electron. Or more accurately:
three unpaired same-spin electrons are resonating together into a single spherically-symmetrical
stationary-wave harmonic resonance structure.

Whether or not the orbital symmetries are as clearly defined as depicted here, this
geometry might serve as a first approximation when integrating the volume of spin phase overlap
in order to represent spin bonding numerically. In that case, half of the 2™ shell’s volume will
involve parallel spin-bonding (PSB) [3,4]; each of the three electrons will experience a one-third
volume overlap with each of its adjacent electrons. We might therefore speculate that between
one fourth and one half of the spin-space energy in the 2" shell is reduced as a result of this
resonance. This describes the essential mechanism of Hund’s Second Rule: the energy-lowering
of angular momentum reduction that results from the energy sharing of spin-bonding.

It seems logical that the overlapping case (in fig. 4) might be a more accurate
representation (than in fig. 3), simply because, when a stable stationary wave develops, each
individual wave within the structure can be seen as being composed of two adjacent antinodal
regions, which overlap with others in order to represent the complete structure (see fig. 5 below).

Fig. 5: Overlapping wave (blue) within a stationary wave resonance.



On the other hand, since the three antinodes (and their nodes) will be equally distributed
around the atom, the non-overlapping view can be seen as a convenient way to divide the shell
volume between its equivalent electronic components. What may be drawn as a clear boundary
between sub-orbitals would then simply mark the center of the nodal boundary — through which
energy is nonetheless continually flowing.

3.2: A Plasma Analogy

A useful analogy for visualizing atomic orbitals might therefore be to think of them
almost as if they are plasma tufts around a spherical electrode.

One tool for visualizing such ‘tufts’ might be the images taken from the work of the
SAFIRE Project [5]. During the operation of their reactor, various stable plasma states and
concentric plasma shells have been generated and photographed around the spherical electrode,
as shown below. These structures appear to be separated by nodal regions of low though
non-zero electron density, or perhaps akin to Langmuir electric double layers. What is more, the
distribution of small tufts around the electrode appears to evoke a platonic-style regular spherical
symmetry. That should not be surprising, given the symmetry and maximized repulsion distance
required by electron domains in an atomic or molecular system.

Fig. 6: Several examples of plasma tufts and shells from the SAFIRE Project [5], generated
around the spherical electrode in their reactor.

The comparison between the plasma tufts and shells of an electrode and atomic orbitals is
invoked, not simply because of the visual similarity that might be imagined, but because
electromagnetic plasma phenomena are known to be scalable [6].

The analogy to the atom might go further still. An atom might be thought of as behaving
in a similar manner to an electrode, in terms of its charge interactions — a positive nuclear
‘anode’ surrounded by a negatively charged virtual cathode that is the harmonic electron wave
constituting the orbitals. One could even imagine considering the single atom as a sort of
continuous ‘plasma,’ since it is made up of a coherence between positive and negative fermions,
and produces orbital regions that may be similar to an electrode plasma sheath.

Further, while the electrodes pictured above represent a macroscopic system, and their
tufts (and shells) will each contain a large number of electrons at this scale, if such a plasma were
scaled down to the size of a single atom, it is conceivable that the tufts could be composed of
either one electron or a di-electron, since these are the units of quantization in atomic orbitals.



The image on the far right in figure 6 above, for example, might evoke the concept of a valence
shell with 12 electron domains.

4. sp’-HYBRIDIZATION & OCTET EXPANSION

Although sp’-hybridization is a familiar concept in chemistry, the orbital structures of
carbon (C), neon (Ne) and argon (Ar) will be considered in order to underscore the differences
between the present approach and the traditional approach.

4.1: Carbon (C)

Carbon (C) has an electron configuration of 1s?2s?2p?. In this case, the sp’-hybridization
that occurs allows the atom to achieve tetrahedral symmetry involving the s-orbital and three
p-orbitals of the 2™ shell. Like boron, carbon cannot simply add its two p-electrons into the same
(2s%) configuration that beryllium (Be) has because it would not be stable. The asymmetry
therefore causes the two paired electrons in the 2s orbital to uncouple from their di-electron state
in order to form a fermionic fetra-electron state with the two p-electrons.

The four equal-energy (degenerate) electrons can now achieve maximum stability by
assuming a 4-directional (tetrahedral, sp’-hybridized) arrangement around the core electron shell.
This minimizes repulsion by having their regions of maximum electron density as far from one
another as they can get.
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Fig. 7: The orbital diagram for carbon. The large wireframe (top, right) indicates the boundary
of the 2" shell.

Note again that the small spheres within the 2™ shell in the image above simply indicate
the directions of maximum electron density. The orbitals themselves will be more like four equal
tetrahedral sections of the shell, or a 4-lobed tetrahedral wave (see fig. 8§ below). Each orbital
occupies one fourth of the volume of the shell, though not uniformly, as electron density has a
maximum at the center of the orbital and decreases towards the orbital boundaries due to electron
repulsion. But electron density will nonetheless fill the entire shell in order to shield the positive
charge of the nucleus in every direction. In the carbon atom, each of the four hybrid orbitals
contains one electron.



Fig. 8: Four sp’ orbital lobes (left) [7] and tetrahedral spherical harmonic wave (right).

As in the case of boron, though, we might equally well consider the spin-bonding
unpaired electron orbitals to be overlapping in ‘spin space’ (see fig. 9 below). In this case, 5/12"
[8] of the 2™ shell’s volume will involve parallel spin bonding (PSB), as each electron
experiences a volume overlap (region A in fig. 9) with each of its three adjacent electrons.

Fig. 9: Overlapping shell segments of the 3" spherical harmonic ‘note’ [8].

Four-directional (tetrahedral) symmetry is significant because, after the sphere, it is the
first multi-directional symmetry that can attain near perfect spherical symmetry. While the
three-directional (sp?) symmetry of boron is symmetrical in the equatorial direction, it is not
spherically symmetrical since its axial electron density will be lower than its equatorial electron
density.

It is possible that electron spin in these tetrahedral sub-orbitals will be radially oriented
(in the absence of an external magnetic field), since this allows for greatest symmetry, and
therefore, degeneracy. If so, carbon’s 2™ electron shell would be a spin-zero region that is
nowhere not spinning.

Note that carbon does not exist in nature in its isolated atomic form, being always bonded
to at least one other atom. That does not render this discussion merely theoretical, however,
because, in order to measure ionization energy, elements are atomized in gaseous form before
being ionized. In such cases, atoms will adopt their most symmetrical electron structures, both
before and after ionization. The first ionization energy of carbon should therefore represent the
removal of one electron from this spin-bonding, tetra-electron resonance structure. That should
be more difficult than removing one from the #ri-electron resonance structure in boron, which it
is [9].

4.2: Trans-Carbon Asymmetry

In the case of nitrogen, oxygen, and fluorine, however, their sp’-hybridization will not be
perfectly symmetrical. Nitrogen’s 4 electron domain directions contain 3 unpaired electrons and
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one di-electron (pair) in a tetrahedral arrangement. Di-electrons contain greater electron density
than a single electron, they are diamagnetic, and they therefore repel more strongly than an
unpaired electron. ‘Lone pairs’ consequently take up more volume than unpaired electrons in the
orbital wave resonance, as is well known in traditional chemistry.

We therefore expect that nitrogen’s three degenerate unpaired 2"-shell electrons will
collectively occupy a little less than three fourths of the shell volume.

Since oxygen’s sp’-hybridization contains two di-electron pairs and two unpaired
electrons, the di-electrons will occupy a little more than half of the shell volume, with the two
unpaired electrons forced to share the volume that remains. (This is the reason that the H-O-H
bond angle in the water molecule is 104.5° rather than a perfectly tetrahedral 109.5°.)

4.3: Fluorine: Orbital Constriction & Extension

Fluorine’s sp’-hybridization contains three di-electrons and only a single unpaired
electron. This last unpaired electron will therefore occupy much less than one fourth of the
shell’s volume because it will experience constriction as a result of the strong repulsion it feels
from all three of the di-electrons surrounding it.

It is here proposed that this will cause this unpaired electron orbital to be extended
radially outward in response to this lateral constriction. (It will be limited in the extent to which
it can be compressed inward, due to the outward repulsion and electron density of the inner shell
di-electron beneath it.) Fluorine’s unpaired electron orbital may therefore bulge outward, beyond
the average radius of the three di-electron hybrid orbitals, resulting in an innately asymmetrical
atom. (This is depicted in an exaggerated manner in figure 10 below.)

\

Fig. 10: fluorine s bulging unpaired electron orbital resulting from di-electron constriction

If this conjecture is correct, it may be this ‘bulging’ unpaired electron orbital — in
addition to the high effective nuclear charge and great desire for a full shell resonance — that
contributes to fluorine’s extreme reactivity. This reactivity can also be seen as a statement about
the full-shell configuration of neon — about the large amount of energy that is released when it
is adopted. It is so stable because it is a highly symmetrical and bosonic quantum electron state
(see §4.4).

This concept of orbital constriction and outward extension may also find application
further up the periodic table, when we consider the hybrid orbitals of the transition metals.
Specifically, it may play an important role in iron’s strong ferromagnetic character. (See §5.2.)
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4.4: Neon (Ne) & Argon (Ar)

In the case of neon (Ne), at the end of the second row of the periodic table, there is a full
valence shell containing 8 electrons.

While carbon, nitrogen, oxygen, and fluorine all experience sp’-hybridization, the
traditional view of neon’s full second shell involves a spherical 2s* orbital di-electron, with 6
unpaired p-electrons resonating within it in three mutually orthogonal directions.

It is here proposed, however, that the most stable, symmetrical, lowest energy state for
the neon atom is achieved with 4 di-electrons in sp’-hybridized tetrahedral symmetry. The 8
electrons sharing the small second (valence) shell would achieve lowest energy if they paired up,
since both magnetic field and spin cancellation are maximized in di-electron formation [3]. With
4 di-electrons in tetrahedral symmetry, electron repulsion is minimized and the greatest distance
between regions of maximum electron density can be maintained.

A comparison between the traditional approach and such a proposed structure is shown in
figure 11 below.

Fig. 11: The unhybridized version of neon’s orbitals (left) with its traditional lobe view (green),
compared to 3 representations of neon s tetrahedral di-electron orbital symmetry (right).

Another possibility is that the outer shell of neon constitutes an octa-electron spin-zero
boson. This would have even more symmetry than the 4 di-electron case, and would allow for a
greater degree of indistinguishability between the electrons of the single resonant harmonic
system. Though it may not represent the lowest energy state of the system.

If the above proposal for neon is correct, the electron configuration of argon (Ar) should
produce two nested spherical tetrahedra, aligned antiparallel (and anti-prismatic), as shown in
figure 12 below.

Fig. 12: Argon's nested tetrahedral orbital geometry (left), and with one outer orbital raised
(right) for ease of viewing [7].
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The reason that such a nested antiparallel tetrahedral geometry would be most stable is
that the region of lowest electron density on one shell would be aligned opposite the region of
highest electron density on the shell above or below, thereby minimizing repulsion between
shells. In the diagram above, the vertex where the nodes between orbitals intersect would be a
point of lowest electron density. It lies directly opposite the center of the face of the orbital above
or below it, which is the point of highest electron density in that orbital. Such an overlap would
therefore represent the lowest energy state.

While the entire atom can freely rotate, the two shells should maintain their relative
orientation by way of holding the atom in its preferred, lowest energy state.

4.5: Sulfur’s Expanded Hybridization

In the case of neon above, we suggested that 6 unpaired p-orbital electrons, arranged in 3
orthogonal directions, would not be stable, yet that is the structure of the sulfur atom when its
octet is fully expanded.

Like oxygen, the sulfur (S) atom contains 6 valence electrons, with two di-electrons and
two unpaired electrons found in a tetrahedral sp’-hybridized arrangement. When a sulfur atom is
approached by highly electronegative atoms, such as oxygen or fluorine, their high
electronegativities can induce one or both of sulfur’s valence di-electrons to uncouple, yielding
up to 6 unpaired electrons available for bonding, in up to six-directional sp’d’-hybridization.
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Fig. 13: Orbital diagrams for sulfur hybridizing into an octahedral sp’d’-hybridized geometry

The sulfur hexafluoride (SF¢) molecule’s 6 covalent bonds in octahedral symmetry' is an
example of this structure. This is possible for sulfur but not oxygen because sulfur’s outer 3™
shell contains a larger volume than oxygen’s outer 2™ shell. It can therefore accommodate more
electron density — in the case of SF, the presence of 12 electrons.

While this octahedral symmetry (fig. 13, on the right) looks just like the geometry of the
traditional p-orbitals shown earlier (in fig. 1), it is important to note that it is not made up of just
p-orbitals. It is a hybridization that combines 3s-, 3p-, and 3d-orbitals. Further, it only occurs

! Octahedral, because its 6 bonding sites define the vertices of an 8-faceted volume.
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when induced into this state by highly electronegative bonded atoms attracting its electron
density outwards.

This geometry will not manifest, though, when a single sulfur atom is ionized. The first
ionization energy of sulfur should therefore represent the removal of one of the electrons from
one of its two di-electron sub-orbitals in sp’-hybridization. (It will not come from one of the
unpaired electrons. The reason for this is discussed in §6 below.)

In fact, if the structure proposed above for neon is correct, it would mean that there is no
case in nature where p-orbitals exist in three mutually orthogonal directions, as they are modeled
in traditional quantum mechanics for the single-electron hydrogen atom. When p-orbitals are
present along with other orbitals in the same space, they must always hybridize because mutual
electron interactions at close-range, in the same atomic shell, cannot be avoided.

5. pd-HYBRIDIZATION

It is here proposed that when p- and d-electrons occupy the same shell, their interactions
invite us to consider them as a hybridized unit rather than as independent, superimposed
harmonic structures. Even so, there will still remain energetic differences between orbitals within
a hybridization as a result of geometric and electron interaction asymmetries. (This is analogous
to energy differences between the di-electron and single electron orbitals within the sp’
hybridization of, say, oxygen.)

As illustrated in figure 14 below, one s-orbital coupled with the three p-orbitals yields up
to 4-directional (sp’-hybridized) symmetry for up to 8 electrons. Three p-orbitals coupled with
five d-orbitals yields up to 8-directional symmetry for up to 16 electrons.

BEE p’d” hybridization: 16 electrons

| | | | sp’ hybridization: 8 electrons

Fig. 14: pd-hybridization

Using the traditional nomenclature as our guide, we will call these p’d (tetrahedral)
through p’d® (hexagonal bipyramidal or cubic) symmetries. The resulting 4-, 5-, 6-, and
8-directional symmetries are shown in the diagram below for the 3d transition metals. The
asymmetry of a 7-directional geometry means that the electron wave state will find a way to
avoid it, if possible.

Note carefully again that, in the diagrams below, the small spheres are only intended to
show the relative directions of the electron domains, not their shape. (The lightly colored
wireframe spheres represent unpaired electrons and the full color spheres represent di-electrons.)
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Fig. 15: pd-hybridization and electron domain geometries for the 3d transition metals [7].

In 3"-shell pd-hybridization, the 3s-orbital electrons are not needed in order to achieve
stable symmetry. A 4s-electron is nevertheless available to help the hybrid orbitals achieve
optimal symmetry, if needed. This is known to occur in several cases, for example chromium
(Cr) and copper (Cu). (Chromium, for example, would be stuck with an asymmetrical
7-directional electron geometry in its 3™ shell if an electron from the 4s-orbital did not drop
down into the 3™ shell to help it achieve a much more stable 8-directional symmetry.)

This persisting 3"-shell di-electron (see fig. 16 below) does introduce a form of wave
resonance that has not occurred on previous elements. There now remains a spherical di-electron,
within which the pd-hybrid orbital electrons resonances can be supported and stabilized. Even
when the 4s valence electrons are delocalized during (metallic) bonding, the core electron
geometry will remain the same, still stabilized by the persisting 3"-shell di-electron.

Fig. 16: Alternative view of the orbitals of scandium (see §5.1. below) showing the persisting 3s*
di-electron around its core shell.
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It would be expected that such a new form of resonance would manifest as a chemical
property change, and in fact, this is the point on the periodic table where the transition metals
show up. They have properties that are quite distinct from previous elements.

Within such pd-hybrid orbitals, if di-electrons and unpaired electrons occupy the same
shell, the larger di-electron repulsion will predominate and determine the base geometry, since
they repel more strongly than unpaired electrons. As we saw in the case of nitrogen, oxygen, and
fluorine above, this is simply because di-electrons contain twice the electric charge of single
electrons, they are diamagnetic, and they occupy more volume as a result of their higher electron
density and greater repulsion. Single, unpaired electron repulsion will therefore be satisfied
secondarily, filling in the remaining electron domain directions in as symmetrical a fashion as
possible.

While the electron and di-electron symmetries might not be identical in pd-hybridization,
they must still each attain (stationary wave) symmetry in order to be stable. Overall symmetry
might therefore not be perfectly platonic, but it will be the best “2-way” symmetry attainable for
the system, just as we saw with boron’s (trigonal planar) 2-way symmetry.

In the case of titanium’s 5-directional symmetry (see fig. 15 above), it is proposed that the
3 di-electrons will assume a trigonal planar arrangement in order to maximize distance and
minimize repulsion, and the two unpaired electrons will be repelled into the two (furthest) axial
positions, above and below that plane.

It is here proposed, and the details will be clarified in later work, that:

o These pd-hybridized electron geometries, and the interactions they bring to bear, appear
to account for the trend in paramagnetic strength across the 3d transition metals. (This
trend does not go simply according to the number of unpaired electrons present.)

e One of the two proposed factors that facilitates ferromagnetism in iron (Fe), cobalt (Co),
and nickel (Ni) results from electron interactions between specific pd-hybridized
geometries within the crystalline metallic structure.

5.1: Scandium (Sc)

Scandium (Sc) is the first element to feature a d-orbital electron. It is here proposed that a
4-directional symmetry can be achieved with p’d-hybridization. This yields tetrahedral symmetry
involving 3 di-electrons and 1 unpaired electron without involving the 3s-orbital electrons. The
3s-electrons can therefore remain in their spherical di-electron state, within which (or perhaps
upon which) the other 3" shell electrons resonate, stabilized, like harmonics upon a fundamental.


https://quicycle.com/21-scandium/
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Fig. 17: The orbital diagram for p*d-hybridized scandium (Sc) [7]

hedral

As seen in figure 17, the 3"-shell tetrahedral symmetry will also align both antiparallel
and antiprismatic to the 2™ shell tetrahedral di-electrons within it, in order to minimize mutual
di-electron repulsion. The 4s® valence di-electron shell surrounds the atom, or is delocalized
during metallic bonding. As such, this atom’s spectrum should reflect three different signatures
for the 3™ shell electrons, i.e. the 3s? di-electron, the three 3p’d di-electrons, and the single
unpaired 3p’d electron.

5.2: Iron (Fe)

Iron is the sixth element with electrons in the d-orbital, and it has a uniquely symmetrical
electron structure among the 3d transition metals.*

It is proposed that iron has a 3" shell containing 4 di-electrons and 4 unpaired electrons
in p’d-hybridized cubic symmetry, all resonating within a spherical 3s’ orbital. The 4
di-electrons and 4 unpaired electrons will arrange themselves in a highly symmetrical,
alternating fashion that minimizes repulsion. This electron domain geometry (shown in fig. 18
below) can arguably more correctly be viewed as two intersecting, antiparallel (and
anti-prismatic) tetrahedral structures, one containing di-electrons, the other single electrons.

In such a configuration, the 4 tetrahedral di-electrons in the 2™ shell will be aligned
directly beneath the unpaired electrons in the 3™ shell in order to minimize inter-shell repulsion
with the di-electrons in the 3" shell.

It is here proposed that it is this unique and highly symmetrical structure of unpaired core
electrons that gives iron its important magnetic properties. (The details of iron’s ferromagnetic
mechanism will be explored in future work.)

2 Even though nickel, copper, and zinc also have a cubic electron domain geometry, they do not have the added
symmetry of iron’s alternative electron-di-electron orbital structure.
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Fig. 18: The orbital diagram for p’d’-hybridized iron (Fe) [7]

Iron’s 3™ shell antiparallel double tetrahedral symmetry is also known as a dual
tetrahedron, in which each point also coincides with a corner of a cubic structure. Interestingly,
when an iron crystal is magnetized, it adopts a body-centered cubic lattice, which is the same
electron geometry as double-tetrahedral, just viewed from a different angle, as shown below.

Fig. 19: ‘Cubic’ and ‘tetrahedral’ views of an iron atom along with a dual tetrahedron formed
from two ‘antiparallel’ intersecting tetrahedra.

It is proposed that the great symmetry and stability of this double-tetrahedral structure is
one of the two factors contributing to iron being the most strongly ferromagnetic element. The
other has to do with a slightly different form of inter-shell and inter-atom orbital spin interaction
within the crystal, one similar to that proposed above for fluorine. (See §5.3.)

5.3: Ferromagnetic Spin-Bonding

In the geometry of iron proposed above, the four unpaired electron orbitals are all
surrounded by (four) same-shell di-electrons. They will therefore all be laterally constricted, in
the same way that we proposed above for the fluorine atom. In addition, each unpaired electron
orbital in iron’s 3" shell has an inner-shell di-electron orbital immediately beneath it. That adds
even more repulsion and constriction from below.



18

Since the valence electrons in a metal crystal are delocalized by way of metallic bonding,
[10] iron’s eight p’d’-hybrid orbitals appear on the surface of the atomic cores within the crystal,
resonating upon and stabilized by the ‘fundamental’ that is the 3s’-di-electron. The four
tetrahedrally-arranged unpaired electron orbitals are also extended radially outward, into the
crystalline interatomic distances between the atomic cores, as a result of the amount of
constriction and extension they experience from the di-electrons beside and beneath them.
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Fig. 20: ‘Cubic’ geometry of an iron atom (left) along with three views of its unpaired electron
orbital extension due to constriction.

It is proposed that, in a crystal, this brings the electrons on adjacent iron atom cores into a
range across which inter-atomic electron interactions become more significant. This form of
crystal interaction is here dubbed ‘ferromagnetic spin-bonding,” and it will be further detailed in
future work, along with investigating why iron, cobalt, and nickel are the only transition metals
to be naturally ferromagnetic, even though chromium and manganese have more unpaired
electrons. It will also be investigated how this model appears to account for the trends in relative
melting points versus Curie Temperatures for these three ferromagnetic metals.

6. d-BLOCK ION GEOMETRY

When in metallic form, the valence s-orbital electrons of a metal become delocalized, and
when in 2+ ionic form®, they are removed. In both cases, the inner electron geometry should
remain the same.

It is here proposed, however, that when the 3+ ion forms, an electron is removed from
one of the core pd-hybrid di-electrons, and not from one of the unpaired electrons or from the 3s
orbital di-electron. This occurs in order to achieve the most symmetrical electron structure. If it
were to lose an unpaired pd-hybrid electron, the symmetry would be reduced from 8- to
7-directional, which would then simply force one of the di-electrons to dissociate in order to
reconstitute 8-directional symmetry. If it were lost from the 3s di-electron, the fundamental
would be weakened for all of the other hybrid electrons, representing a less stable overall state.

In the cobalt (Co) atom, the 3"-shell hybrid orbitals contain 5 di-electrons and 3 unpaired
electrons, to yield 8-directional symmetry. The loss of two 4s-electrons to form the Co*" ion will

3 Or the 1+ form in the case of chromium or copper (in the 3d row).
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still retain that 3"-shell (hexagonal bipyramidal) geometry. If a third unpaired electron is then
lost to form the Co®" ion, there will remain 5 di-electrons and 2 unpaired electrons, yielding
7-directional geometry with no 4s-electrons left to redeem its symmetry. The loss of an electron
from one of the di-electrons, however, will yield 4 di-electrons and 4 unpaired electrons, for an
8-directional cubic (or ‘double-tetrahedral’) 3™ shell geometry. This is a far more stable and
symmetrical configuration, and the same one that is here proposed for the iron (Fe) atom, the
element before cobalt on the periodic table.

Fig. 21: The orbitals of cobalt (left), the Co’" ion (center), and the Co®" ion (right)

7. CONCLUSION & FUTURE WORK

The primary conclusions of this paper are:

e Spin-mediated electron interactions (also known as ‘spin-bonding’) help determine
atomic orbital and hybridization geometries within atomic electron shells.

e The stronger repulsion of di-electrons can cause the constriction and radial extension of
adjacent unpaired electron orbitals within a shell.

e [t is proposed that this process occurs in fluorine’s valence shell, and that it may
contribute, along with the several other known factors, to its very high reactivity.

e It is proposed that pd-hybridization occurs in the electron shells of the transition metal
atoms, stabilized upon an s-orbital di-electron foundation, and yielding geometries that
would otherwise not be considered without such a hybridization.

e [t is proposed that, in the case of iron, it is the combination of its pd-hybrid geometry — a
remarkably symmetrical cubic, double-tetrahedral 3"-shell symmetry — along with the
significant constriction and radial extension of its unpaired electron orbitals, that causes
its strong ferromagnetism.

Future work will investigate and seek to model the consequences of these hybrid electron
structures in more detail.* These will include:
e modeling how such electron and orbital interactions affect (or dictate) the values and
trends in ionization energy and electron affinity,
e accounting for the strength trend in d-block paramagnetism, based upon pd-hybridization,

* Appropriate software tools are currently under development at the Quantum Bicycle Society (www.Quicycle.com)


http://www.quicycle.com

20

investigating the mechanism of ferromagnetism in more detail, including why on/y iron,
cobalt, and nickel are ferromagnetic in the d-block,

introducing pdf-hybridization and possible ground-state electron geometries for
neodymium (Nd) and gadolinium (Gd) that help to account for their magnetic properties.
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