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Transverse electron focusing in a two-dimensional electron gas is mvestigated expenmentally and
theoretically for the flrst time. A split Schottky gate on top of a GaAs-AlxGa,_^As heterostructure
defines two point contacts of variable width, which are used äs mjector and collector of ballistic
electrons As evidenced by their quantized conductance, these are quantum point contacts with a
width comparable to the Fermi wavelength At low magnetic flelds, skipping orbits at the electron-
gas boundary are directly observed, thereby establishing that boundary scattenng is highly specular
Large additional oscillatory structure in the focusing spectra is observed at low temperatures and
for small pomt-contact size This new phenomenon is mterpreted in terms of mterference of
coherently excited magnetic edge states m a two-dimensional electron gas A theory for this effect is
given, and the relation with nonlocal resistance measurements in quantum ballistic transport is dis-
cussed It is pomted out, and expenmentally demonstrated, that four-termmal transport measure-
ments m the electron-focusmg geometry constitute a determmation of either a generalized longitu-
dmal resistance or a Hall resistance At high magnetic fields the electron-focusmg peaks are
suppressed, and a transition is observed to the quantum Hall regime The anomalous quantum Hall
effect m this geometry is discussed m light of a four-termmal resistance formula

I. INTRODUCTION

A magnetic field can be used to focus electron beams in
vacuum The motion of Bloch electrons in the solid state
on length scales small compared to the (elastic) mean free
path 1L is similar to the motion m vacuum. One then
speaks of ballistic transport Focusing of balhstic elec-
trons has been studied extensively in metals In such ex-
penments, point contacts small compared to le aie em-
ployed to mject ballistic electrons at the Fermi level, so
that an essentially monoenergetic ("monochromatic"),
but divergent, electron beam is created. The focusing ac-
tion of a magnetic field can then be detected in an elegant
way by usmg a second point contact, which acts äs a col-
lector or voltage probe (drawmg no net current). This
technique, pioneered by Sharvm1 and Tsoi,2 is a powerful
tool to obtain Information on the shape of the Fermi sur-
face,3 on electron-phonon interaction,4 and on surface
scattenng The surface can be a free surface of a crystal,5

or a metal-superconductor mterface6 (Andreev reflec-
tion7) In metals, electron focusing is essentially a clas-
sical transport phenomenon, because of the small Fermi
wavelength λ^ (typically 0.5 nm)

Due to the large Fermi wavelength m the two-
dimensional electron gas (2D EG) in GaAs-Al^Ga^^As
heterostructures (typically 40 nm), the quantum balhstic
transport regime has recently become accessible. We
have fabncated 2D EG point contacts, with a variable

size comparable to λρ. The discovery of the quantized
conductance of such quantum point contacts has been re-
ported elsewhere.8'9 Here we employ quantum point con-
tacts äs monochromatic point sources m an electron-
focusmg geometry (see Fig. 1). The current through the
mjector is kept fixed, while the collector voltage is mea-
sured äs a function of the perpendicular magnetic field.
Electrons mjected in a direction perpendicular to the 2D
EG boundary can reach the collector directly, or after
specular reflections from the boundary, for magnetic
fields B such that the point contact Separation L is an in-
teger multiple of the classical cyclotron diameter
2fikp /eB (with kF = 2-rr/KF the Fermi wave vector) This
occurs when B is an integer multiple of the focusing field

B focus > given by

focus (1)

Electrons mjected withm a small angle around the per-
pendicular direction are, for these field values, focused
onto the collectmg point contact, äs mdicated in Fig. 1.
Trajectories at glancing angles do not contnbute to the
focusing, but are observed äs a background Signal. A
plot of collector voltage versus field thus exhibits a senes
of equidistant peaks at B =z-ßfocus (i =1,2,3, . . .), which
is called a focusing spectrum. As we shall show, focusing
expenments with quantum point contacts yield quahta-
tively different results than related expenments in the
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FIG. l. Schematic arrangement for transverse electron focus-
ing. Trajectories leaving the injector around the normal direc-
tion are focused onto the collecting point contact. Glancing ari-
gle trajectories contribute to the background.

classical ballistic transport regime characteristic for met-
als. This justifies a new name: coherent electron focusing.

From a different point of view, electron focusing is a
quantum ballistic transport phenomenon, related to those
observed in narrow multiprobe channels defined in a
high-mobility 2D EG.10 It has recently become clear that
the voltage probes used to measure the potential drop
along such channels have an inextricable influence on the
transport. As we demonstrate in this paper, the injecting
current contact is also of essential importance. Transport
measurements in the electron-focusing geometry offer a
striking demonstration of the fact that quantum ballistic
transport is governed by the interaction of the relevant
quantum states with current and voltage probes, rather
than by a local resistivity, äs in the classical diffusive
transport regime.

We summarize our main results äs follows. (1) Ballistic
injection of electrons in a 2D EG is realized for the first
time. (2) Skipping orbits are directly observed, thereby
demonstrating conclusively that the scattering from the
2D EG boundary is predominantly specular. (3) Interfer-
ence structure in the focusing spectra is observed at low
temperatures and for small point-contact size, demon-
strating the coherent nature of the focusing process. (4)
A theoretical description of coherent electron focusing in
a 2D EG is provided, reproducing the essential features
of the experiment. (5) Four-terminal electron-focusing
experiments are identified äs either generalized longitudi-
nal or Hall resistance measurements, äs demonstrated by
the transition from focusing peaks to quantum Hall pla-
teaus at high magnetic fields. A four-terminal resistance
formula is derived within the frame work of the
Landauer-Büttiker11 formalism, which relates the Hall
resistance to the contact resistances of injector and collec-
tor. The anomalous quantum Hall effect in the electron-
focusing geometry12 is discussed in the light of this resis-
tance formula.

The paper is organized äs follows. In See. II details on
the sample and its fabrication are described, and in See.
III the properties of single quantum point contacts are
briefly discussed. In See. IV the experimental results ob-
tained in the electron-focusing geometry are presented.
The theoretical analysis of classical and coherent electron

focusing in a 2D EG is the subject of See. V and Appen-
dix Α-D. A discussion of the results is given in See. VI,
which concludes by giving indications for future exten-
sions.

Some of our experimental and theoretical results have
been briefly reported previously, in Refs. 13 and 14, re-
spectively.

II. SAMPLES AND EXPERIMENTAL DETAILS

Conceptually, point contacts can be thought of äs
small orifices in a thin insulating layer, separating bulk
metallic conductors (with lc much larger than the size of
the orifice). In practice, point contacts are usually15 fa-
bricated by pressing a metal needle on a metallic single
crystal, followed by spot welding. Even though some sur-
face damage is introduced, ballistic transport has success-
fully been studied in this way in a variety of metals.16

One limitation of this technique is that the size of the
point contacts is not continuously variable.

For a 2D EG the above-mentioned method cannot be
used, since the electron gas is confined at the GaAs-
Al^Ga^^As interface in the sample interior. Our point
contacts, defined by a split Schottky-gate lateral depletion
technique,17 are essentially short and narrow constric-
tions18 in the 2D EG. The starting point for the fabrica-
tion is a GaAs-Al.tGa]_.t As heterostructure grown by
molecular-beam epitaxy. The carrier concentration äs
obtained from the Shubnikov-de Haas oscillations in the
magnetoresistance is ns = 3.5X 10

15 ~
, and the mobili-

ty μ = 90 m2/V s, leading to a transport mean free path
/ C sa9 μηι. Α Standard mesa-etched Hall-bar geometry
was subsequently defined by wet etching. The split-gate
geometry on top of this Hall bar is schematically indicat-
ed in Fig. 2(a). Electron-beam lithography is used to
write the fine details of the gate. A typical gate structure
is shown in the scanning electron micrograph of Fig.
2(b). The actual 2D EG boundary is a depletion-potential
wall underneath the gate pattern. Note that the de-
pletion potential extends laterally beyond the gate pattern
for high gate voltages (up to about 150 um). As indicated
in Fig. 2(a), the fine details of the gate are connected to
broader gates, defined by optical lithograpy. These gates
run over the wet-etched sides of the mesa towards a
bonding pad (the mesa sides are inclined at an angle of
45° with respect to the Substrate). No gate Isolation is
needed, even on the mesa sides, because of surface de-
pletion of the 2D EG. (Leakage currents at low tempera-
tures are below 10" 10 A under normal operating condi-
tions.) By increasing the (negative) voltage on the
Schottky gate, the electron gas underneath the gate struc-
ture is depleted. Beyond the depletion threshold (typical-
ly —0.6 V) no mobile carriers are present under the gate,
and two conducting constrictions are formed with a
width of about 250 nm. Two high-mobility 2D EG re-
gions are thus electrically isolated from the rest of the 2D
EG in the Hall bar, apart from the narrow constrictions
or point contacts under the openings of the gate. We
note that electron-beam-induced damage incurred during
the fabrication process will be concentrated under the
gates, where conduction does not take place. A further
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(a)

Ά-"

FIG. 2. (a) Schematic layout of the double-point-contact de-
vice for the electron-focusing experiments. The crossed squares
are Ohmic contacts to the 2D EG. The split gate (shaded)
separates injector (/) and collector (c) areas from the bulk 2D
EG. The dashed line indicates an electron trajectory in a mag-
netic field. (b) Scanning electron micrograph of the fine details
of the gate structure deflning a double-point-contact device.
The bar denotes a length of l μηι. In this device the point-
contact Separation is 1.5 μιη. Most experiments discussed in the
text were performed on a device with a 3.0-μηι point-contact
Separation.

One of the contacts can be used äs a ballistic electron
injector, while the other point contact acts äs a collector
for the electrons which are focused by a magnetic field.
(We remark that due to fabrication tolerances the inject-
ing and collecting point contacts have a different width
for a given gate voltage. One of the devices has been con-
structed in such a way that injector and collector can be
adjusted separately.) A low-frequency ac lock-in tech-
nique is used to measure the ratio of the collector voltage
to the injected current. Several Ohmic contacts (alloyed
Au-Ge-Ni) on the sides of the Hall bar [see Fig. 2(a)] al-
low the electron focusing to be measured four-terminally
äs well äs three-terminally. Both experiments have been
performed (see See. IV). Here we already note that in
three-terminal measurements of the focusing a back-
ground voltage is measured in series with the collector
voltage, mainly because of the Ohmic contact resistance,
and additionally because of a small diffusive background
resistance (of order 100 fl) originating in the wide 2D EG
regions. Such a background resistance is also seen in
two-terminal measurements on a single point contact. At
temperatures around l K the Ohmic contact resistance is
small, but upon lowering the temperature to the mK re-
gion an anomalous rise of the zero-field alloyed Ohmic
contact resistance (up to 3 kii) is observed. This effect
can be suppressed by a weak magnetic field (0.1 T) lead-
ing to a negative magnetoresistance in these measure-
ments. We attribute this effect to quasi-one-dimensional
localization17'19 in the disordered Ohmic contact regions,
presumably related to narrow meandering conduction
paths in these regions. For fields beyond 0.1 T, or for
temperatures above 300 mK, this effect does not influence
the results. Moreover, it can be fully eliminated in four-
terminal measurements of the focusing.

Most of the experiments were performed on the device
with a point-contact Separation L of 3.0 μτη described
above. Additional measurements have been made on a
similar device with a smaller L of 1.5 μηι, to check the
expected l /L dependence of the magnetic field scale.
Unless stated otherwise, our results refer to the L =3.0
μπα device.

increase of the gate voltage forces both constrictions to
become progressively narrower until they are fully
pinched off. By this technique it is possible to define
point contacts with variable width W. A nice feature is
that the point-contact Separation L remains approximate-
ly constant (3.0 μηι) when the width is varied. We men-
tion that the precise functional dependence of width and
carrier concentration on the gate voltage is dependent on
the previous history of the sample. Thermal cycling and
strong reverse biases lead to a shift in the depletion
threshold. The details of the focusing spectra are äs a
consequence not reproducible after such changes, al-
though they reproduce very well if the sample is kept
cold, and the gate voltage is not strongly varied. We also
remark that, äs a secondary effect, the "mirror" consti-
tuted by the electron-gas boundary between the two point
contacts shifts if the gate voltage is changed. Typically,
this shift is of the order of 100 nm/V (äs estimated from
the pinch-off characteristics of the constrictions).

III. TRANSPORT THROUGH SINGLE
QUANTUM POINT CONTACTS

The transport properties of the injecting and collecting
point contacts are relevant to the electron-focusing exper-
iments reported in this paper. In this section we there-
fore give a brief discussion of transport through single
quantum point contacts.8'9'20 For classical ballistic point
contacts (^»^»λ^·) in a 2D EG the two-terminal
conductance G is given by8

G =
kFW

h -π
(2)

for an infinite square-well confining potential in the point
contact. An increase of the negative gate voltage leads to
a decrease of both the point-contact width W and of the
electron density nc — kp/2ir in the constriction. We
would therefore expect a smooth decrease of G with in-
creasing negative gate voltage. As reported in Refs. 8
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and 9, the conductance of quantum point contacts devi-
ates m an interesting way from this classical formula, m
that plateaus m G äs a function of gate voltage are ob-
served. The pomt-contact conductance is approximately
quantized in multiples of 2e2/h, due to quantization of
the transverse momentum in the constnction. As can be
shown semiclassically,8 or by means of the two-termmal
Landauer formula,11'21'22 the conductance in a plateau re-
gion is given by

-T=- (3)

with Tc the transmission probabihty through the con-

stnction and Nc the largest integer smaller than kF W /π
The second equality m Eq (3) assumes that no back-
scattenng occurs m the constnction If quantization can
be ignored (Nc»l), the classical result (2) for G is
recovered. Under the conditions of our electron-focusmg
expenment, Nc is a small number, so that the quantum
nature of the point contacts is impoitant.

We now turn to the efFect of a perpendicular magnetic
field B on the two-termmal conductance of a single point
contact Equation (3) remains vahd in a field, which has
only the efFect of reducmg the number of occupied sub-
bands Nc in the constnction Ignormg the discreteness of
Nc, one finds, for an infinite confimng potential,20

NC(B) =
arcsm(»V2/cyd) + (»Y2/c y c l)[l

Mcyd/2 ifW>2lcycl ,

if W <2l cyü (4a)

(4b)

where lcyci=fikF/eB is the cyclotron radius. A denva-
tion of Eq. (4) is given m Appendix A. The magnetic
depopulation of subbands begms at fields where the cy-
clotron diameter is of the order of the pomt-contact
width W. Accordmgly, the conductance of a smgle quan-
tum point contact decreases stepwise if the magnetic field
is increased, äs found experimentally.9'20 As shown m
Ref. 20 these expenmental data, together with Eq. (4),
yield estimates for both the width W and the electron
density nc in the constnction.

In Fig. 3 results are given for the resistance äs a func-
tion of magnetic field for a ränge of gate voltages Vg (at a
temperature of 50 mK). As mentioned in See II, a small
diffusive background resistance origmating m the wide
2D EG regions is measured m series with the balhstic
pomt-contact resistance. Shubnikov-de Haas oscilla-
tions m the background resistance can be observed, with
a characteristic l /B penodicity23 (see, e.g., the curve for
V = -0.75 V m Fig. 3 m the field region from 0.6 to 3

FIG 3 Two-termmal magnetoresistance of a single point
contact at 50 mK for a series of gate voltages The curves have
been offset vertically for clanty

T). Notice also the negative magnetoresistance peak
around zero field, which originales m the Ohmic contacts
(see See II) In a ränge of gate voltages at high magnetic
fields we see magnetoresistance oscillations which are
penodic m B itself,24 and are remimscent of the
Aharonov-Bohm effect m rings. These oscillations vamsh
for very narrow constnctions (cf. the curve for
Vg = — 0 75 V in Fig 3), and also at higher temperatures
(l K) or mjection voltages As discussed m Ref. 24, a
possible mechamsm for this quantum-mterference efFect
is tunnelmg between edge states acioss the point contact
at the potential step at the entrance and exit of the con-
stnction. (The potential step is a result of the reduced
electron density in the constnction ) The magnetoresis-
tance data in Fig. 3 are for one of the point contacts of
the device with L =3.0 μηι Other point contacts had a
similar magnetoresistance, but without periodic oscilla-
tions.

For the low-field electron-focusmg expenments, the
most important conclusion to be drawn from Fig 3 is
that the two-termmal resistance of a narrow point con-
tact (correspondmg to a large negative gate voltage) is
essentially constant over a broad field ränge.

IV. ELECTRON FOCUSING:
EXPERIMENTAL RESULTS

A. Temperature and gate-voltage dependence

In Fig 4 the collector voltage äs a function of magnetic
field is shown for the device with 3.0-μηι pomt-contact
Separation, at temperatures between 7 K and 50 mK At
the higher temperatures a clear set of equidistant peaks is
observed, associated with multiple specular reflections
from the 2D EG boundary. Classically, peaks m the col-
lector voltage are expected to occur at values of the mag-
netic field such that the pomt-contact Separation L is an
integer multiple of the cyclotron orbit diameter 2fikF/eB
Substituting L = 3 0 μιη and kF = (2irns )

l / 2= l 5X10 8

m~' (with n^ determmed from the Shubmkov-de Haas
oscillations), we expect focusing peaks at multiples of
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J?focus =0.066 T from Eq. (1). These field values are indi-
cated by arrows in Fig. 4. The observed peak positions at
the higher temperatures agree within the experimental
uncertainties with this prediction. The observation of
electron focusing establishes that ballistic injection of
electrons in the 2D EG has been realized in this experi-
ment. We recall that the /th peak is due to electrons
which have made ; — l specular reflections at the bound-
ary. The large number of peaks observed thus demon-
strates that the reflections from the 2D EG boundary are
predominantly specular.

The experimental focusing spectrum shown in Fig. 4
differs in several ways from the classical focusing spectra
familiär from similar experiments in metals. Classically,
for purely specular boundary scattering the peak height is
expected to be independent of the peak number /', and if
the scattering is only partially specular the peak height
should decrease with i (see See. V). In our experiment,
however, the peak height depends nonmonotonously on ;'.
Moreover, äs shown in Fig. 4, at low temperatures a
reproducible fine structure is superimposed on the classi-
cal focusing peaks. This fine structure is smeared if the
injection voltage is increased. The data in Fig. 4 have
been obtained with an injection voltage below kB T/e,
which for a temperature of 50 mK corresponds to 4 μΥ.
The voltage measured on the collector was typically a
factor of 10 or more lower than the voltage drop across
the injector. The signal-to-noise ratio was still acceptable
under these conditions. If the injector voltage is consid-
erably increased above this value, the fine structure is

0 0.1 0.2 0.3 0.4 0.5
0

FIG. 4. Typical (three-terminal) electron-focusing spectra at
temperatures between 7 K and 50 mK. Peak positions predict-
ed by Eq. (1) are indicated by arrows.

smeared, analogous to the eifect of a temperature in-
crease. A similar smearing of the spectra occurs if the
point contacts are widened by reducing the negative gate
voltage, äs shown in Fig. 5. In this experiment the injec-
tion voltage was kept low, and the temperature was 50
mK. The position of the classical focusing peaks is un-
changed, äs expected, since the point-contact Separation
is essentially unaffected by the gate voltage. The width of
the point contacts can, in principle, be determined from
their quantized conductance in a magnetic field.20 A
difficulty with this analysis is that the electron density in
the constriction also changes if the gate voltage is varied.
In the experiments discussed above (on the L =3.0 μτη
device), the width of the injecting point contact is es-
timated to be 20 nm at the highest negative gate voltage
studied, while the width of the collector is appreciably
wider (of the order of 80 nm). The ultimate resolution at-
tained with this device is therefore limited by the finite
point-contact size, rather than by the temperature or the
injection voltage. This is substantiated by the fact that a
limited temperature increase up to 300 mK, or a corre-
sponding increase in injection voltage, have a negligible
influence on the focusing spectra.

In the low-magnetic-field ränge of Fig. 4, the focusing
spectra are characterized by classical focusing peaks with
superimposed fine structure. At higher fields (beyond
about 0.4 T) the collector voltage shows oscillations with
a much larger amplitude than the low-field focusing
peaks, and the resemblance to the classical focusing spec-
trum is lost. This is shown in Fig. 6, for two gate volt-
ages. Notice that, although the spectra are well reprodu-
cible, they depend sensitively on the gate voltage. A
Fourier transform of the spectra (see inset of Fig. 6)
shows that the large-amplitude high-field oscillations
have a dominant periodicity of 0.06±0.01 T, which is ap-
proximately the same äs the periodicity -ßfocus= 0.066 T
[Eq. (1)] of the low-field focusing peaks. This dominant

c;
=L 0

0 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 5. Dependence of the electron-focusing spectra on the
gate voltage (and thus on the point-contact width) at 50 mK. A
large negative gate voltage corresponds to narrow injector and
collector point contacts.
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FIG. 6. Electron-focusing spectra at 50 mK for two gate

voltages Vs = — l. 53 V (lower trace) and — l .22 V (upper trace).
The inset gives the Fourier-transform power spectrum of Vc for
B>0.4 T (dashed curve, Fg = —1.53 V; solid curve,
K =-1.22 V).

periodicity is insensitive to changes in gate voltage. In
See. V we will explain its origin in terms of quantum in-
terference of coherently excited edge states in the 2D EG.

These data were obtained on the device with a point-
contact Separation L = 3.0 μιη. In order to check the ex-
pected scaling of the periodicity with l /L, we also stud-
ied a device with L =1.5 μτη (and carrier density
/^=3.9Χ10 1 5 m~2, estimated from the Shubnikov-de
Haas oscillations). The focusing spectrum for this second
device is shown in Fig. 7. The characteristic features
above for the L =3.0 μιη device (Fig. 6) are reproduced
in the L =1.5 μτη device, but on a field scale which is
larger by approximately a factor of 2. From the first two
focusing peaks we estimate 5 focus=0.11+0.01 T, which
is somewhat smaller than the value of 0.14 T predicted
for this device by Eq. (1). This discrepancy may be due in
part to the uncertainty in the effective point-contact Sepa-
ration of the order of the split-gate opening (250 nm),
which in this device is relatively large compared to the
nominal point-contact Separation (1.5 μτη, which follows
if we assume that the centers of both point contacts are in
the middle of the openings in the gate). A Fourier trans-
form of the high-field oscillations (inset in Fig. 7) shows
that these have the same dominant periodicity äs the
low-field focusing peaks, consistent with the results ob-
tained for the L = 3.0 μιη device. The L =1.5 μηι device
had a slightly diiferent design, which allowed the injector
and collector widths to be adjusted separately (the results
of Fig. 7 were obtained with both point contacts having
the smallest quantized conductance of 2e2/h). The in-
creased resolution is most likely the reason for the much
larger peak height in Fig. 7, compared with Fig. 6. (An

α

o

0 20
frequency (l/T)

0 0.4 1.60.8 1.2

B (T)

FIG. 7. Electron-focusing spectrum at 50 mK for the device
with 1.5-μπι point-contact Separation (all other data are for the
L =3.0 μπι device). The inset gives the Fourier-transform
power spectrum of Vc for B > 0.8 T.

additional reason might be that the point contacts are
closer with respect to the electron phase coherence
length.) Notice that up to 95% modulations of the collec-
tor voltage are realized in this quantum-interference de-
vice.

B. Relation to nonlocal resistance measurements

The quantity measured in the electron-focusing experi-
ments is the voltage difference between the collector and
one of the Ohmic contacts attached to the wide 2D EG
region, divided by the injected current. Depending on
how the Ohmic contacts are connected [see Fig. 2(a)] this
corresponds to a nonlocal Hall- or longitudinal-resistance
measurement. This correspondence was never manifest
in electron focusing in metals, presumably because of the
more complicated 3D geometry. We therefore discuss
this in some detail (cf. also Appendix D).

A three-terminal measurement in a 2D EG ideally
yields for one magnetic field direction a purely longitudi-
nal resistance, while for the other field direction the Hall
resistance is obtained. In practice, also the voltage drop
across the common current-carrying contact is measured
in series. In three-terminal measurements of electron
focusing this additional voltage drop, related to the Ohm-
ic contact resistance, causes the negative magnetoresis-
tance peak around B =0 seen in Fig. 8(a). The origin of
this effect has been discussed in See. II. This contact
resistance is eliminated in four-terminal resistance mea-
surements. A four-terminal measurement of electron
focusing can be characterized äs a generalized Hall-
resistance measurement if an imaginary line connecting
the voltage probes crosses a line connecting the current
source and drain contacts, or a generalized longitudinal-
resistance measurement if this is not the case. The data in
Figs. 8(b) and 8(c) demonstrate this experimentally.

We now give a more detailed discussion of these re-
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sults. The data in Fig. 8(a) have been obtained in a
three-terminal configuration. For one field direction the
focusing signal is seen to be superimposed on a rising
background, with a slope corresponding to the Hall resis-
tance (see below). For reverse fields beyond 0.4 T weak
Shubnikov-de Haas oscillations are observable, arising
from the 2D EG background resistance, which are
characteristic for a longitudinal-resistance measurement.
Apart from these oscillations, the reverse field signal is
essentially independcnt of the magnetic field, because the
2D EG has no classical magnetoresistan.ee [see also Fig.

Figure 8(b) is a four-terminal measurement of the gen-
eralized longitudinal resistance. As expected, the rising
background associated with the Hall effect, and also the
magnetoresistance peak around B =0, have disappeared.
Figure 8(c) shows the generalized Hall resistance. The
straight line in the reverse field part of the focusing plot
in Fig. 8(c) is indeed the normal classical Hall effect.
From the slope of this l ine we find a Hall ratio of 1780
fl/T, in close agreement with a calculated value using the

1.5

§ 1-0
N^

Ο -0.3 -0.2 -0.1 0 0.1 0.2 0.3
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FIG. 8. Electron focusing at 50 mK for three measurement
configurations, depicted in the insets. (a) Three-terminal mea-
surement; (b) four-terminal generalized longitudinal-resistance
measurement; (c) four-terminal generalized Hall-resistance mea-
surement.

carrier density obtained from Shubnikov-de Haas data
(from « S =3.5X10 1 : > m~2 we find a Hall ratio
l /n s e =1790 Ω/Τ). At B =0 a sudden transition is seen
from a linear to an approximately quadratic B depen-
dence of the resistance (cf. the calculation of this transi-
tion in See. V). The electron-focusing experiment in this
configuration is a nonlocal Hall-resistance measurement
in the ballistic transport regime. Classically, the nonlo-
cality arises because the collector is less than a mean free
path away from the point-contact injector. Quantum
mechanically, the resistance measurement is, in addition,
nonlocal because the point-contact Separation is less than
the phase coherence length, which can appreciably
exceed the mean free path. The Hall resistance measured
in our electron-focusing experiment is alternatingly both
larger and smaller than the classical Hall resistance, äs a
consequence of the electron focusing (cf. See. V). This
also explains why alternatingly positive and negative volt-
ages are seen in Fig. 8(b), because it is equivalent to Fig.
8(c) after subtraction of the classical Hall resistance. The
possibility, in principle, of negative resistances ("uphill
voltages") in a four-terminal measurement was em-
phasized by Büttiker11 and Landauer.21 The present ex-
periment provides one simple physical mechanism for
such an effect (an explicit calculation is given in See. V).

C. Reciprocity of injector and collector

In the diffusive transport regime, where a local resis-
tivity can be defined, Onsager-Casimir25 relations de-
scribe the symmetry of the components of the resistivity
tensor in the presence of a magnetic field. The origin of
these symmetries is microscopic time-reversal invariance.
Also symmetry relations for resistances can be found, äs
discussed, for example, by van der Pauw.26 In the present
case of ballistic transport no local resistivity exists, but
instead only resistances have a meaning. Büttiker11 has
derived a reciprocity relation for resistances, which holds
in the nonlocal quantum transport regime of interest in
this paper. He shows that

where the two pairs of indices refer to the current and
voltage leads respectively. This relation describes the re-
ciprocity of resistances with interchanged current and
voltage leads. As discussed above, electron focusing is a
generalized resistance measurement, and accordingly Eq.
(5) should also hold for these experiments. Indeed this is
found to be the case äs demonstrated by the data in Fig.
9, which were obtained after interchanging the roles of
injector and collector. This experiment beautifully
demonstrates the reciprocity relation (5) for the four-
terminal phase-coherent resistance in the ballistic trans-
port regime (see Ref. 27 for other experimental
confirmations).

D. Transition to the quantum Hall regime

The analogy between electron-focusing and Hall-
resistance measurements has a further interesting aspect,
which we discuss in this subsection on the basis of results
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FIG. 9. Electron focusing in the generalized Hall-resistance

configuration, äs in Fig. 8(c). The two traces correspond to in-
terchanged current and voltage leads, and demonstrate the
injector-collector reciprocity which follows from Eq. (5).

obtained over a wider field ränge (up to 5 T) shown in
Fig. 10. For B >2 T focusing peaks are no longer ob-
served, and instead quantura Hall plateaus28 appear. The
basic reason for this transition is that at such high fields
the resolution necessary to distinguish subsequent focus-
ing peaks is lost, since the cyclotron diameter is smaller
than the point-contact size (an explicit calculation of the
smearing of the focusing peaks is given in See. V). One
might therefore expect the sample to be equivalent to a
normal Hall bar with wide current and voltage probes,
and consequently to observe the quantum Hall effect (in
the generalized Hall-resistance configuration, or for
three-terminal measurements with the appropriate field
direction). Note that for typical point contacts in metals
this limit is beyond reach, because of the much larger
Fermi velocity, and the correspondingly larger cyclotron
radius. Although the similarity between the result shown
in Fig. 10 and the normal quantum Hall resistance is sug-
gestive, significant deviations occur. In contrast to the
quantum Hall effect observed in normal Hall-bar

FIG. 10. Transition from weak-field electron focusing to
high-field quantum Hall effect (in a three-terminal measure-
ment). Quantum Hall-plateau values corresponding to h/ie2

are indicated for / =3,4, . . . ,9. The observed plateaus occur
consistently at lower-magnetic-field values than expected from
the classical Hall resistance of 1790 Ω/Τ, indicated by the
dashed line.

geometries (where the plateaus are centered at the classi-
cal Hall resistance), the plateaus seen in Fig. 10 systemat-
ically occur at lower-magnetic-field values. Furthermore,
at fields around 5 T an unusual oscillation is seen in the
Hall resistance.

In order to understand the origin of such deviations,
one has to take into account the potential barrier in the
point contacts, resulting from the reduced local electron
concentration. The argument12 is äs follows. The
current-carrying states in high magnetic fields are edge
states at the 2D EG boundary with Fermi energy EF.
The edge states with Landau level index n (referred to
collectively äs an edge channel) can only be transmitted
across a potential barrier if their guiding center energy

(6)

exceeds the potential-barrier height (disregarding tunnel-
ing through the barrier). Here a>c=eB/m is the cyclo-
tron frequency, and the Zeeman spin Splitting is ignored
for simplicity. In the injector (in which the barrier has a
height E,), this condition is met for Nl~(EF — E,)/ficu^
edge channels, while the collector (with barrier height Ec)
is capable of transmitting Nc~(EF—Ec)/fia>c channels.
At the boundary of the 2D EG, however, a larger number
of NLKEF/fi(i)c edge channels, equal to the number of
bulk Landau levels in the 2D EG, are available for the
current transport. The key point necessary for an under-
standing of the deviations seen in Fig. 10 is that, in the
absence of inter-edge-channel scattering, the current
along the 2D EG boundary from injector to collector is
carried by only the first TV, of the NL available edge chan-
nels. The selective population, and detection, of edge
channels leads to deviations from the normal Hall resis-
tance, consistent with the argument of Büttiker29 that
equilibration of edge channels by inelastic scattering
plays a crucial role in establishing the quantum Hall
effect.

These considerations can be put on a theoretical basis
using the general Landauer-Büttiker formalism,11 which,
äs shown in Appendix D, predicts for the electron-
focusing geometry that the generalized Hall resistance
3l H Ξ Vc /I, is given by

h
-r,. l

(7)

Here, T,_>c is the transmission probability from injector
to collector, and G (,GC are the two-terminal conduc-
tances of the injecting and collecting point contacts. (It
should be noted that "two-terminal" in this context refers
to an idealized Situation, where series resistance contribu-
tions due to the alloyed Ohmic contacts, or to finite resis-
tivity in the wide 2D EG regions, is eliminated, äs op-
posed to real two-terminal measurements such äs shown
in Fig. 3.) In high magnetic fields the guiding center en-
ergy is an approximate constant of the motion, provided
the electrostatic potential varies slowly on the scale of the
magnetic length lm=(fi/eBY/2. In this field regime Eq.
(7) takes a very simple form if the barrier in one of the
two point contacts is much higher than in the other, so
that electrons which are transmitted over the highest bar-
rier will have a negligible probability of being reflected at
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the lowest barrier (in the absence of other sources of
scattering in the 2D EG, which due to the close proximi-
ty of injector and collector is not an unrealistic assump-
tion, äs shown throughout this paper). Then T, > c is
dominated by the transmission probability over the
highest barrier, and therefore by the smallest of the two-
terminal conductances, ( 2 e 2 / h ) T l _ ^ c « min} G,,GC } [cf.
Eq. (3)]. Substitution into Eq. (7) gives the remarkable re-
sult, l

that the high-field Hall resistance in the electron-focusing
geometry can be expressed entirely in terms of contact
resistances. In particular, Eqs. (3) and (8) teil us that
quantized values of !/ΪΗ occur not at h/2e2NL, äs one
would expect from the NL Landau levels in the 2D EG,
but at the larger value of h/(2e2max{Nl ,NC j ) , deter-
mined by the largest number of edge channels above the
barrier in either the injector or the collector. As demon-
strated in Ref. 12, this anomalous behavior of the Hall
resistance is indeed observed experimentally.

The enhancement of the Hall resistance predicted by
Eq. (8) explains the shift of plateaus in Fig. 10 to lower
magnetic field values. To put it differently, due to the re-
duced density in the point contacts, depopulation of the
edge states occurs at lower magnetic fields than in the
bulk of the 2D EG. The identification of the Hall resis-
tance with a contact resistance in Eq. (8) also explains the
large deviations from exact quantization. The slow oscil-
lation in Fig. 10 at 5 T is indeed similar to that seen in
two-terminal measurements of the magnetoresistance of
the point contacts.24

The mechanism responsible for this slow oscillation is
unclear, but may be related to spin Splitting, äs we now
briefly discuss. The guiding center energy differs for
spin-up and spin-down electrons by the Zeeman energy
gμßB. We note that the odd-integer plateaus are barely
resolved in Fig. 10. In normal Hall-bar geometries such
plateaus are fully resolved for fields above 4 T. This sug-
gests that the g factor in perpendicular magnetic fields is
much less enhanced in the point contact than in the wide
2D EG. It is quite conceivable that this would affect the
point-contact magnetoresistance. We note in this con-
nection that in parallel fields the spin Splitting requires
even larger fields exceeding 10 T to be resolved.9 This
eifect is similar to that noted by Smith et al.30 in capaci-
tance measurements on narrow 2D EG channels in paral-
lel fields.

A further discussion of these eifects is beyond the
scope of this paper, and we refer to Ref. 12 for a sys-
tematic study of the quantum Hall effect in a geometry
with separately adjustable injecting and collecting point
contacts. We note that the effects described above are re-
lated to the observations of backscattering of edge states
in four-terminal experiments on a constriction or wire
containing a potential barrier.31'32

V. THEORY OF ELECTRON FOCUSING

A. Classical electron focusing

Before turning to interference effects, we first consider
the focusing spectrum in a 2D EG äs it would follow

from classical mechanics. We Start with the simplest case
of a point injector and collector, and put the finite con-
tact size in afterwards. For simplicity, we assume in the
following calculations that the electron density in the
point contacts is the same äs that in the broad 2D EG re-
gions (the effect of a reduced density in the point-contact
region is discussed below). The 2D EG boundary is
modeled äs an infinite potential wall, causing purely spec-
ular boundary scattering. Consider a current flux tube
which leaves the injector at an angle a with the χ axis
(see Fig. l for our choice of axes), with an infinitesimal
angular opening da. The current through the flux tube is
dl=~cosal: da, with /, the total injected current. We
assume that the electrons are injected under all angles
— γ7Γ<α<γτΓ, weighed by cosa. This is what one ex-
pects classically in zero magnetic field for an injector
modeled by a "hole in a screen." A nonzero field will
only affect this angular distribution appreciably if the cy-
clotron diameter is comparable to the injector width Wl ,
which regime is considered below. The flux tube reaches
the 2D EG boundary at Separation 5 = 2plcyci cosa from
the injector, afterp — l specular reflections (p = 1,2, . . .).
We denote the cyclotron radius by lcycl=-hkF/eB. The
collector is at s =L, and has an infinitesimal width Wc.
For each p>L/2lcyc}, two flux tubes with
cosa — L/2plcyd (one for positive and one for negative a)
are incident on the collector. The current through the
collector due to one such flux tube is
( Wc dl /da ) 1 3s /da \ ~ ' . The total incident current Ic is

I = 2 { cosa /, Wc \ 2plcyü sina

wc

X[l-(L/2plcyc])
2 2 i / 2 (9)

A similar expression for the incident current is given for
the three-dimensional electron-focusing geometry by Ben-
istant.33 The collector voltage Vc will adjust itself so that
the same amount of current flows back into the 2D EG
and no net current is drawn. This implies VC=IC/GC,
where Gc is the conductance of the collector and Vc is
measured relative to a grounded Ohmic contact which is
also the drain for 7, [a three-terminal measurement, or
equivalently a four-terminal measurement in the general-
ized Hall-resistance configuration (see See. IV and Ap-
pendix D)]. Classically, Gc is given by Eq. (2), provided
Wc is much smaller than the cyclotron diameter. Com-
bination with Eq. (9) gives

'c π

p>L/21 cycl

X[l-(L/2pl cycl ; (10)

The divergencies at L = 2plcycl are a consequence of as-
suming an infinitesimal width of both point contacts.
These divergencies disappear if the finite contact width is
accounted for by replacing L in Eq. (10) by L +yc—y,,
and then averaging y,,yc over the respective widths
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FIG. 11. Classical focusing spectrum, calculated from Eq.
(10) with W, = WC=50 nm, for two measurement configurations
corresponding to Figs. 8(b) and 8(c). The dashed line in (a) is
the extrapolation of the classical Hall resistance seen in reverse
fields.

Wt,Wc of the injector and collector. (The resulting ex-
pression is rather lengthy, and not recorded here.)

A plot of the classical focusing spectrum in the gen-
eralized Hall-resistance configuration obtained from Eq.
(10) is shown in Fig. 11 (a) for the experimental parame-
ters L =3.0 μηι and /ci. = 1.5X10 8 m"1. The spectrum
consists of a series of equidistant peaks at magnetic fields
which are multiples of 5focus =0.066 T [Eq. (1)]. With
respect to the monotonously increasing baseline, these
focusing peaks are of approximately equal height, which
increases upon reducing the point-contact widths (Fig. 11

i
p<(L+yc)/yc

is for WI = WC—50 nm). Such a classical focusing spec-
trum is commonly observed in metals albeit with a de-
creasing height of subsequent peaks because of partially
diffuse scattering at the metal surface.

The resistance Vc //, is alternatingly larger and smaller
than the classical Hall resistance RH=B/ens [dashed
line in Fig. 11 (a)], äs a consequence of the focusing effect.
This was also found experimentally [cf. See. IV and Fig.
8(c)]. At very small fields the resistance is suppressed
below RH,

h
2e2 kFL *

TT B L
48 en, l cycl

(L/2plcycl)

ifWc,W,«L«lcyc] , (11)

vanishing äs B2 rather than B. Note in Fig. 1 1 (a) that for
reverse fields the normal Hall resistance occurs, leading
to a discontinuity in VC/IIB at B = 0. This behavior is
evident in the experimental data, cf. Fig. 8(c). The
electron-focusing spectrum in the generalized
longitudinal-resistance configuration is obtained from Eq.
(10) by simply subtracting the classical Hall resistance
R„. A plot is shown in Fig. ll(b). As a result of the
focusing effect, we see negative longitudinal
resistances — in agreement with the experiment [cf. Fig.

At very large fields, such that eilher Wc or Wt is larger
than the cyclotron diameter, the resistance Vc //, be-
comes identical to RH, because the resolution required
for the observation of the focusing effect is lost. (If both
point contacts have a reduced density, the Hall resistance
at large fields deviates from its normal value of B /en^, äs
discussed in Ref. 12 and See. IV; this case is not con-
sidered here.) The transition from focusing peaks to nor-
mal Hall resistance can be studied most easily for the
case in which one of the point contacts has an
infinitesimal width, much smaller than both /CJC , and L.
Which of the two point contacts has the smallest width is
irrelevant in view of the injector-collector reciprocity
(See. IV and Appendix D), but to be definite let us assume
that W, <</c)c l,L. The angular distribution of injected
electrons is then unaffected by the magnetic field. The to-
tal incident current on the collector is given by

121-1/2

=/ {[l-(Z./2p/cycl)
2]1/2-[l-(Lmin/2/,/cycl)

2] (12)

with the definition Lmm~min{L+Wc,pL/(p
— l) , 2p/cycl). Equation (12) is obtained'from Eq. (9)
upon carrying out the average over the collector width,
and adding the restriction pyc < L +yc to the summation
over p. This restriction, which was unnecessary in the
case Wt, Wc «/ , considered above, avoids the multi-
ple counting of electron trajectories with chord lengths

smaller than the collector width. To obtain the collector
voltage Vc, we divide Ic by the collector conductance Gc,
modified by the magnetic field according to Eq. (4). The
result is plotted in Fig. 12, for Wc=200 nm. The transi-
tion to the normal Hall resistance (dashed line in Fig. 12)
occurs at 2/cycl = Wc, which corresponds to a field of l T.
Beyond this field all injected electrons enter the collector,
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FIG. 12. Classical focusing spectrum in the generalized

Hall-resistance configuration, calculated from Eq. (12) with
Wc = 200 nm, showing the transition from electron focusing to
the normal Hall effect (dashed line).

so that the focusing can no longer be detected.
We mention one more interesting regime. If the

point-contact Separation is very much larger than their
widths, there is an intermediate-field regime
Wc, W; <</cyci «L in which we may approximate

2e2 kFL

X[l-(L/2plcycl)
2]~l/2

:ycl '

8 en,
ifWc,Wi«lcycl«L (13)

In this regime the resistance is approximately linear in B,
just äs the normal Hall resistance, but with an anoma-
lously large slope.

In the above calculation we have disregarded the re-
duced electron density in the point-contact region. The
electric fields induced by the carrier depletion collimate
the electron beam, thereby enhancing the electron-
focusing peaks, äs we now briefly discuss. In the point
contact the bottom of the conduction band is raised rela-
tive to the wide 2D EG. We model this by potential bar-
riers of height E,· and Ec in the injector and collector.
The corresponding reduced densities are n(

= m ( EI,- — Ej) /V/?2 and nc=m( EF — Ec} /ττϋ2, whereas
the density in the wide 2D EG is given by ns = mEF/Trif'.
To be specific we first assume that the injector has the
highest barrier. To overcome this barrier the energy of
motion in the χ direction should be larger than Ej, so
that the injected electrons have velocity directions re-
stricted to a cone of allowed angles a defined by
Ep cos2a > EJ . This restriction changes the normaliza-
tion factor in the expression for the current through a
flux tube, which is now given by dl
= ̂ cosa(l—Ei/EF)~i/2Iida, for α in the allowed cone.
Since we have assumed that Ei>Ec, the barrier in the
collector does not affect the incident current, but enters
only in the expression for the collector conductance, Eq.
(2), by reducing the Fermi wave vector,

Gc=(2e2/h}(\-Ec/EFY
/2kFWc/Tr .

Here, kF — ( 2 m E F Y / 2 / f i denotes the Fermi wave vector
in the wide regions. These two modifications combine to
increase the height of the focusing peaks by a factor

The injector-collector reciprocity discussed in See. IV
and Appendix D implies that the above result is valid re-
gardless of the relative height of E,· and Ec. We note that
a horn-shaped constriction also tends to collimate the
electron beam, and has a similar sharpening effect on the
electron-focusing peaks äs a barrier.

The results in this subsection explicitly demonstrate
that large deviations from the normal Hall effect can
occur in the ballistic transport regime due to classical
electron focusing. Deviations similar to those of Eq. (13)
can result from a reduced electron-gas density in the
point contacts (or current and voltage probes in general),
cf. Ref. 12 and See. IV. Their common origin is the ab-
sence of equilibrium among current-carrying electrons
along the 2D EG boundary, due to a lack of inelastic
scattering.29 These anomalies in the Hall effect in a broad
2D EG are to be distinguished from the anomalies in nar-
row 2D EG channels, which have recently been the sub-
ject of extensive experimental34 and theoretical35'36 inves-
tigation.

B. Coherent electron focusing

To explain all of the experimental observations, it is
necessary to go beyond the classical description of elec-
tron focusing given above. We first present a simple qual-
itative argument. Quantum ballistic transport along the
2D EG boundary takes place via magnetic edge chan-
nels,37^40 which are the propagating modes of this prob-
lem. Some well-known results on magnetic edge states
are reviewed in Appendix A. The modes at the Fermi
level are labeled by a quantum number n = 1,2,. . . , «max,
with the number of edge channels «max being equal to the
number of occupied bulk Landau levels. If the injector
has a width below λ^, it excites these modes coherently.
Since injector and collector are separated by less than a
phase-coherence length (at least at low temperatures), in-
terference between these modes can be of importance. In
this subsection we demonstrate that such interference is
responsible for large structure in the focusing spectra, if
injector and collector are sufficiently narrow. For
kpL »l the interference of modes at the collector is
determined by the phase factors exp(ik„L), which vary
rapidly äs a function of n. The wave number kn in the y
direction (along the 2DEG boundary, see Fig. 1) corre-
sponds classically to the χ coordinate of the center of the
cyclotron orbit, which is a conserved quantity upon spec-
ular reflection at the boundary.39 In the gauge
A = (0,Bx,0) this correspondence may be written äs [cf.
Eq. (A2)] kn = k p sina„, where a is the angle with the χ
axis under which the cyclotron orbit is reflected from the
boundary (— ±-ττ<α<±-π). The quantized values a„ fol-
low in this semiclassical description from the Bohr-
Sommerfeld quantization rule38"40 [cf. Eq. (A4)] that the
flux enclosed by the cyclotron orbit and the boundary
equals (n ~±)h/e (for an infinite barrier potential). Sim-
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ple geometry shows that this requires that

"•F'cycl

n =1,2, . . ,n m a x (14)

with «max the largest integer smaller than jkFlcy(:l + ̂
As illustrated in Fig 13, the dependence on « of the
phase k „L is close to linear in a broad interval Expan-
sion ofEq (14) around an =0 gives

knL = const — 2-irn
B

B focus

+ kFLO([(nmax-2n)/nmaJ
3) (15)

It follows from this expansion that if B /Bfocus is an in-
teger, a fraction of order (l//c fL) 1 / 3 of the nm d x edge
channels interfere constructively at the collector Be-
cause of the γ power, this is a substantial fraction even
for the large kFL ~450 of the expenment. The relevant
states have quantum number n m an interval centered
around «max/2, correspondmg to a„=0. (The edge
states outside the domam of linear n dependence of the
phase give rise to additional mterference structure which,
however, does not have a simple penodicity.) The result-
mg mode-mterference oscillations with B(ocus periodicity
can become much larger than the classical focusmg
peaks. To demonstrate this, we now calculate the wave
function φ in the Wentzel-Kramers-Bnlloum (WKB) ap-
proximation.

We consider a pomt-dipole mjector and determme
|3Ψ/3.χ 2 at the coordmates (x,y) = (0,L) of the collector.
We assume Ψ is unperturbed by the presence of the col-
lector. The dipolar distnbution

Ψ = (21, /-rrvFr)'/2 exp( ikFr) cosa

at a small Separation r from the mjector (with /, the m-
jected current and VF the Fermi velocity) is chosen m-
stead of Isotropie injection, because of the boundary con-
dition Ψ = 0 at χ = 0. The current Ic through a collector

+kFL

-kFL

3kF1cycl

FIG 13 Phase k„L=kfL sma„ of the edge states, calculat-
ed from Eq (14) Note the domam of approximately linear n
dependence of the phase, discussed m the text

with a width of the order of λρ is determmed in a first ap-
proximation by the unperturbed probabihty density at an
infinitesimal distance from the collector. Since for an
infinite barner potential both Ψ and οΨ/dy vanish at
χ =0, this density is proportional to our calculated

|2, so that we can wnte

L=e.
3Ψ

(0,L) (16)

(with ε an undetermmed parameter). The conductance of
the collector is given in the same approximation by (see
Appendix B)

,2

G =
2e

(17)

We thus find for the collector voltage VC=IC/GC the ex-
pression

2

2e2 dx
•(0,L) (18)

which is mdependent of the parameter ε.
In the WKB approximation41 the wave function

is the sum over all classical trajectones from mjector to
the point (x,y) of an amphtude factor times a phase fac-
tor exp(/(/>). The amphtude factor is mversely propor-
tional to the square root of the cross section of a particle
flux tube contammg the trajectory, äs required by current
conservation. The phase increment φ acquired along the
trajectory is the sum of four terms ( D A path-length
term kFl, with / the length of the trajectory. (2) The
Aharonov-Bohm phase (— e/fi) § dl· A, given by the in-

tegral of the vector potential along the trajectory. In the
gauge A = (0,5x0) this term equals —eB&/fi, with &
the area between the trajectory and the boundary at
χ =0. (3) A phase shift of π for each specular reflection
at the boundary. (4) A phase shift of —jir for each pas-
sage through a caustic, which is a point at which the
cross section of the flux tube is reduced to zero (see Ap-
pendix C). These vanous terms are calculated in Appen-
dix B. The final answer is

3Ψ

dx
(0,L) =

(19)

with C= —2ikF(2I, /TrvFL)l/2 a 5-independent prefactor,
ßp = B /pB{ot.as=L/2plcy<:.l the reduced magnetic field,
and the phases given by

= +2ßp(l -ß2
p )

+ (ρ-\)π-(ρ-\}\ιτ ,

ΦΡ = ̂ -[ττ+2 arccos^ -2ßp(l -ß] )1/2]
P

+ (ρ-\)π-ρ\π.

(20a)

(20b)

The index p labels the trajectones mcident on the collec-
tor after p —l specular reflections. For each value of p
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there are two such trajectories, leaving the injector at an
angle with the χ axis given by α = ±arccos/3/I. Both tra-
jectories have the same amplitude factor, but different
phase increments <f>+ and φ~.

In view of the long transport mean free path le ~ 9 μπι
in the experiment, we do not include the effects of impur-
ity scattering in our calculation. We have found that tak-
ing into account impurity scattering in an averaged way,
by weighing the contribution of trajectories of length / to
Ψ with a factor exp( —l/2le), does not significantly aifect
our results. It is quite possible that the actual mean free
path between collisions is considerably smaller than the
transport mean free path obtained from the mobility,
since the latter is insensitive to forward scattering. Timp
et al.21 have argued for a reduction by a factor of 10, on
the basis of their nonlocal resistance measurements in a
narrow 2D EG wire. However, if forward scattering
would play an important role in the electron-focusing ex-
periment, we would not expect to measure oscillations
with a well-defined periodicity, since the scattering would
scramble the phases of the edge states. The present ex-
periment and theoretical analysis therefore seem to indi-
cate that the actual mean free path is not much less than
the point-contact Separation, which is 3 μπι.

In the above treatment we have neglected spin Split-
ting, since the Zeeman energy is much smaller than the
Fermi energy EF in the field ränge considered. We also
neglect a possible B dependence of kF. In the absence of
Landau-level broadening in the bulk of the 2D EG, pin-
ning of EF at Landau levels would give rise to a modula-
tion of kF periodic in l /B by up to 10% at l T. In prac-
tice, the amplitude of the modulation is much reduced by
Landau-level broadening. Moreover, this effect does not
lead to a definite B periodicity of the collector voltage.

The magnetic field dependence of Vc //, resulting from
Eqs. (18)-(20) is shown in Fig. 14 (bottom), for the experi-
mental values L =3.0 μιη and /c f =1.5X10 8 m""1. The
most rapid oscillations were eliminated by averaging L
over an interval of 100 nm. This corresponds roughly to
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FIG. 14. The bottom theoretical curve shows the magnetic
field dependence of the collector voltage calculated from Eqs.
(18)-(20). The top curve results if only the incoherent contribu-
tions are retained (no interference effects).

the combined width of the point contacts—but is other-
wise not intended to be a realistic description of the effect
of a finite contact size, which remains a subject for fur-
ther investigation. Also plotted in Fig. 14 (top) is the in-
coherent contribution to the collector voltage, without
the interference of different trajectories, which shows
simply the peaks from classical electron focusing at mul-
tiples of .ßfocus. Interference effects give rise to fine struc-
ture on the focusing peaks at low magnetic fields, which
grows in amplitude with increasing field. It is apparent
from Fig. 14 (and confirmed by Fourier transform) that
the large-amplitude high-field oscillations have the same
periodicity äs the smaller low-field focusing peaks—äs ob-
served experimentally, and consistent with the mode-
interference argument given above. This is the main re-
sult of our calculation, which we have found to be insens-
itive to details of the point-contact modeling. (Insensi-
tive, for example, to assuming isotropic instead of dipolar
injection.) The above calculation is for T=0. We have
investigated the effect of energy averaging (over an inter-
val of kB T around EF) at finite T, and found that temper-
atures of the order of 10 K are necessary to smear out
most of the interference structure. This is a weaker tem-
perature dependence than observed experimentally (Fig.
4), possibly due to inelastic scattering limiting the phase
coherence at finite temperatures.

The relation between Eq. (19) and the edge states can
be made explicit, if one transforms the sum over trajec-
tories into a sum over modes by means of the method of
stationary phase. This is done in Appendix B, with the
result

, _
——(0,L) = (21)

plus corrections from evanescent waves [ which a numeri-
cal comparison with Eq. (19) has shown to be small]. The
prefactor is

The phases knL =kFL s'man of the modes are the same
äs determined earlier in Eq. (14). [This is äs expected,
since the Bohr-Sommerfeld quantization rule used to
derive Eq. (14) and the WKB approximation which leads
to Eq. (21) are equivalent levels of approximation.] The
alternative representations (19) and (21) of this quantum-
mechanical transport problem are the analogues of the
classical ray and mode descriptions of progagation in a
waveguide.42 In this context the edge states correspond
to Lord Rayleigh's "whispering gallery" waves.43 The
present theory also has many similarities with the theory
of radio-wave propagation through the atmosphere,
where focusing and mode interference are well-known
i 44phenomena.
We note that Tsoi45 (to explain a fine structure in the

first focusing peak in bismuth) has proposed that an indi-
viduell edge state n would cause a peak in the collector
voltage whenever L is an integer multiple of the chord
length 2/cyclcosa„ of the corresponding skipping orbit.
We do not see how this can be reconciled with the fact
that the probability density |Ψ η | 2 of an individual edge
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state isy independent [since y ? n ( x , y ) = f n ( x ) e x . p ( i k „ y ) ] .
The accuracy of our theoretical treatment of coherent

electron focusing is limited by our use of the WKB ap-
proximation, which, in principle, restricts the theory to
treating the effects of edge states with large quantum
numbers. The theory should be accurate at low fields
when a large number of edge channels are populated, but
we expect our main result of the fundamental periodicity
to hold at higher fields äs well. We surmise that an exact
calculation of the focusing spectrum is feasible in the
point-contact limit ^«λ^·, since one can then use the
unperturbed wave functions in the 2D EG which are
known exactly (Weber functions).

VI. DISCUSSION

Electron focusing in metals is a technique which is
widely used to obtain Information on the Fermi surface,
on surface scattering, and on other scattering processes.
Such Information can be obtained from electron-focusing
experiments in a 2D EG äs well. The experiments report-
ed in this paper demonstrate conclusively that scattering
of electrons by the 2D EG boundary is predominantly
specular. This conclusion is of importance for the Inter-
pretation of galvanomagnetic size effects in narrow 2D
EG channels.19'46 The Fermi surface in the 2D EG in a
GaAs-Al^Ga^^As heterostructure [on a (lOO)-oriented
GaAs surface] is simply a circle. It would be of interest
to perform similar experiments on heterostructures with
more complicated Fermi surfaces. The prerequisite for
such studies is a sufficiently high mobility.

Our electron-focusing experiments in a 2D EG have
also yielded results of a different nature, not previously
found in metals. The shape and amplitude of the focus-
ing peaks, and especially the fine structure observed at
low temperatures, are signatures of a new phenomenon:
coherent electron focusing. A quantitative comparison
between theory and experiment requires a more detailed
analysis of the point contacts and gate potential than at-
tempted in See. V. Such a calculation would have to take
into account the reduced electron density in the point-
contact region and along the 2D EG boundary formed by
the gate potential. The appearance of high-field oscilla-
tions with the focusing periodicity, but with much larger
amplitude, is, however, characteristic for the mode-
interference mechanism proposed in this paper. Indeed,
this is the feature of the experimental focusing spectra
which is insensitive to small changes in the gate voltage
and which is present in both the devices studied. This
novel quantum-interference effect in ballistic transport
may also play a role in the multiprobe "electron
waveguides" of current interest.10 Voltage fluctuations
with a well-defined periodicity were found in such a de-
vice by Chang et a/.,47 albeit in the regime where the
transport was not fully ballistic.

Electron focusing is in essence a nonlocal48 transport
measurement in the quantum ballistic regime, in the most
simple geometry conceivable. In contrast to the usual
channel geometry, here electrons interact with a single
boundary only, while current injection and detection is
done by means of point contacts comparable in size to the

electron wavelength. This allows for a simple solution of
the transport problem, äs shown in See. V. The Interpre-
tation of four-terminal measurements of electron focusing
äs generalized Hall- and longitudinal-resistance measure-
ments shows that even in the weak-magnetic-field regime
large and interesting deviations from the Hall and longi-
tudinal resistance in diffusive transport result, äs a conse-
quence of the finite size of current and voltage probes. It
would be of interest to extend both theory and experi-
ment to narrow channel geometries, with point contacts
äs current and voltage probes. The present experiments
and theoretical analysis point the way to the correct
modeling of such probes.

At high magnetic fields a transition from electron
focusing to the quantum Hall effect is observed. In this
regime the measured four-terminal resistance becomes
essentially identical to the two-terminal resistance of in-
jector or collector—whichever is largest.12 Thus quan-
tized plateaus äs well äs quantum-interference eifects
originating in a single point contact show up in the Hall
resistance. These observations can be understood on the
basis of the expression (7) for the collector voltage, de-
rived from the Landauer-Büttiker11 formalism in Appen-
dix D.

We mention a few possibilities for future extensions of
the electron-focusing technique in a 2D EG. Ballistic in-
jection of hot electrons can be realized by voltage-biasing
a point contact. This can be observed äs a shift in the
focusing peaks. Such experiments are in progress.
Diffraction of electrons on a periodically corrugated 2D
EG boundary might be investigated with electron focus-
ing if a structured gate is used to define the boundary.49

The classical or quantum-mechanical localization of elec-
trons by a strong magnetic field could be studied, in prin-
ciple, by defining an obstacle (by means of a gate) in the
space between collector and injector.

The experimental results presented in this paper
demonstrate the feasibility of coherent electron optics in
the solid state. Quantum point contacts äs mono-
chromatic point sources of ballistic electrons, and the 2D
EG boundary äs a mirror, constitute the first proven
building blocks for this new field,
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APPENDIX A: MAGNETIC EDGE STATES

In this appendix we review some known results on
magnetic edge states, which are used in See. V. We first
discuss the classical motion. A skipping orbit (Fig. l or
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inset of Fig. 15) consists of a series of translated circular
arcs. The position (x,y) of the electron on the circle with
center coordinates (X, Y) can be expressed in terms of its
velocity v by

χ=Χ+υ /a>c, y= (AI)

with a>c=eB/m the cyclotron frequency. Note that the
Separation X of the center from the boundary is constant
on a skipping orbit; only the center coordinate Υ parallel
to the boundary changes at each specular reflection. The
canonical momentum of the electron is p — mv — e A. In
the Landau gauge A = (0,Bx,0) we have

px=mvx, p =—eBX (A2)

which teils us that py is a constant of the motion.
The motion projected on the χ axis is periodic, so that

we can apply the quasiclassical Bohr-Sommerfeld quanti-
zation rule

The integral is over one period of the motion, n is an in-
teger, and y is the sum of the phase shifts acquired at the
two turning points of the motion. The phase shift upon
reflection at the boundary is π (for an infinite barrier po-
tential); the other turning point is a caustic (a point at
which classically the particle density becomes infinite),
which gives a phase shift of —\ττ (see Appendix B). This

FIG. 15. Energy spectrum E „(k) of magnetic edge States at a
single boundary represented by an infinite barrier potential.
The energy E is scaled by fta)c, and the wave number k by the
reciprocal of the magnetic length l,„=(fi/eB)ln. The insets
show classical skipping orbits for positive and negative k. Note
that klm = —X/l,„, with X the Separation of the orbital center
from the boundary. In the quasiclassical approximation the
magnetic flux through the shaded areas is quantized. The re-
sulting edge-state-energy spectrum (A6) (solid curves) is indis-
tinguishable from the exact solution (dashed curves, from Ref.
51), unless k is within l//m of the transition from skipping to
cyclotron orbits (dotted curve).

totals to 7 = y7T. Using Eqs. (AI) and (A2) we may thus
write Eq. (A3) in the form

(A4)

This quantization rule has the simple geometrical Inter-
pretation that the flux enclosed by one arc of the skipping
orbit and the boundary equals n—^ times the flux quan-
tum h /e. The above derivation of this old result38"40 is
more direct than the usual one, which proceeds from the
quantization of the orbits in momentum space to coordi-
nate space.

We note that the quantization rule (A4) holds also for
bulk Landau levels (corresponding to circular cyclotron
orbits which do not collide with the 2D EG boundary) —
provided the coefficient n — | on the right-hand side (rhs)
is replaced by n ~ \. [The replacement of | by | ac-
counts for the fact that the reflection at the boundary is
replaced by a caustic turning point, so that the phase

(A3) shift is y = — yTr —y7r=ir (mod2-n·) instead of y = y7
Similarly, Eq. (A4) also holds in a narrow-channel 2D EG
for states which interact with both boundaries, corre-
sponding to traversing trajectories35'50 which move from
one channel wall to the opposite one. The coefficient
n — i on the rhs is then to be replaced by n [correspond-
ing to a phase shift γ = π+π = 0 (modulo 2-Tr) for two
reflections at the boundary]. In this case the geometrical
Interpretation of Eq. (A4) is that n flux quanta are con-
tained in the area bounded by the channel walls and a cir-
cle of cyclotron radius mv /eB centered at X. In the limit
B —>-0 this area equals 2W(mv/eB)cosa (with α the angle
of the trajectory with the χ axis and W the channel
width), so that the usual zero-field quantization condition
(mv /^)cosa — nn/Wis recovered.

Equation (A4) determines, for a given magnetic field,
the energy E =\mv2 äs a function of the quantum num-
ber n and the wave number k=py/ü=— (eB /fi)X. To
carry out the Integration in Eq. (A4) we express y in
terms of χ by means of Eq. (AI),

(Y-y)dx=[E(ma)c

2 l
-x X)2]l/2\dx (A5)

The resulting energy spectrum E„(k)is given by

ι/2 , (Α6)

and is plotted in Fig. 15 (solid curves). Also plotted in
Fig. 15 is the exact solution of the Schrödinger equation
(dashed curves, taken from Ref. 51). The quasiclassical
approximation (A6) is indistinguishable on this scale
from the exact solution, except just before the transition
from skipping orbits to bulk cyclotron orbits at
X =mv/eB (dotted curve in Fig. 15).

The quantization rule (A4) can also be used to find, for
a given energy E, the number of occupied subbands N äs
a function of magnetic field B in a 2D EG channel of
width W. This number N is the largest possible value of
the quantum number n in Eq. (A4). In view of the
geometrical Interpretation of the quantization rule, ./V is
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determined by the maximum number of flux quanta con-
tained in an area bounded by the channel walls and a cir-
cle of cyclotron radius lcyc] = mv/eB = (2mE)l/2/eB.
Note that a maximal enclosed flux is obtained by center-
ing the circle on the channel axis. We therefore have

Be mm \W/2,l
dx , 2 s l / 2

(A7)

with 7=0 if /cycl > W/2, and γ=π if /cycl < W/2. "Int"
denotes truncation to an integer. Evaluation of the in-
tegral gives the required result,

N =

Int

Int[±+E/fuac] if u > l

if u < l , (A8a)

(A8b)

with u = W/2lcycl. The above expression for the number
of occupied subbands has a discontinuity at /cycl = W/2,
originating from the discontinuity in the phase shift γ at
that magnetic field value. This is an artifact of the semi-
classical approximation, which ignores the extension of
the wave function beyond the classical orbit52. Since the
discontinuity in 7V is at most ±1, it is unimportant in
many applications.

APPENDIXE: DETAILS
OF THE CALCULATION IN SEC. V

1. Ray calculation

The required derivative 3Ψ/3χ of the unperturbed
wave function at the collector coordinates (0,L) is calcu-
lated äs follows. The WKB expression41 for Ψ at a point
(dx,L) close to the collector is a sum over all classical tra-
jectories from injector to (8x,L) of an amplitude factor A
times a phase factor e"*". Consider the trajectories which
containp —l specular reflections and reach the endpoint
just before hitting the boundary (this is the incident wave;
the reflected wave also contributes to the unperturbed
wave function and is dealt with below). Two trajectories
meet this requirement (provided 2plcycl>L), one leaving
the injector at a positive angle α with the χ axis, the other
at a negative angle. Both have the same amplitude fac-
tor,

A,=
21.

1/2

(Bl)

where ßp =B/pB{ocus=L/2pl(.ycl is the reduced magnetic
field. The amplitude factor is the product of a B-
independent normalization constant, the angular weight
factor βp = cosa + O (δχ /L) for dipolar injection, and the
inverse square root of the cross section at the collector of
a particle flux tube containing the trajectory—äs re-

quired by current conservation. The phase factors follow
from

(B2)

where p — mv — e A is the canonical momentum (to be in-
tegrated along the classical trajectory, with v| = 1^), nr is
the number of reflections at the boundary, and nc is the
number of passages through a caustic. The + and —
refers to the trajectory with positive and negative a, re-
spectively. In the gauge A. = (0,Bx,0) one finds, to linear
order in δχ,

kFL

P

—ßpkpδx

k „L

-ß•^)1/2]

(B3a)

-ß/,kFδx . (B3b)

Each of the n? = n~ =p — l reflections gives an addition-
al phase shift of -π, which is what is needed to make Ψ
vanish at the boundary (since, then, incident and reflected
waves cancel). Finally, each passage through a caustic (a
point at which the cross section of the flux tube vanishes)
retards the phase by \-π. Physically, this phase shift is
the result of diffraction setting a lower limit to the flux-
tube cross section.53 At a small Separation R from the
caustic the cross section is proportional to R, so that the
amplitude factor A <xR~}/2. The sign change of R upon
passing through the caustic then formally leads to the
phase factor (— l)~ 1 / 2 = exp( — i\ir). (A more satisfacto-
ry derivation for the case of zero magnetic field is given
in Ref. 41, Chap. 17.) The location of the caustics in the
2D EG is determined in Appendix C. Here we only need
the result for the number of passages nc

+ —p — l, n~ ~p.
So far we have considered only the incident wave. The

reflected wave gives identical contributions, but with an
extra phase shift of π and with the term —ßpkF δχ in Eq.
(B3) replaced by +ßpkF&x. Collecting results, we find

y(δx,L)=-2ikFδx (Β4)

with the phases φ£ and φ~ defined in Eq. (20). Con-
sistent with the WKB approximation, we have in Eq. (B4)
neglected terms of order δχ /L, which are a factor kpL
smaller than the terms retained. Upon division of
Ψίδχ,Ι/) by the small increment δχ, we thus obtain the
required result (19) for ΘΨ/θχ at (0,L).

2. Mode calculation

The sum over trajectories in Eq. (B4) can be
transformed into a sum over edge channels (or modes) by
means of the method of stationary phase.54 For kFL » l
the phase φρ varies rapidly äs a function of p, so that the
dominant contributions to the sum (B4) are those which
for subsequent p values close to some value pn (deter-
mined below) differ by approximately 2πη in phase
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(n =1,2,. . . ). To apply the usual method of stationary
phase, we replace φρ by the equivalent φρ=φρ — 2ττηρ, so
that the phase shift of these subsequent terms is approxi-
mately zero rather than 2-πη. The point pn of stationary
phase follows from 9φρ /dpn =0, and need not be an in-

teger. Upon carrying out the differentiation, we find that
pn is determined by ßp = cosan, where the quantized an-

gle an is the same äs defined in Eq. (14). Note that, de-
pending on whether an is positive or negative, the con-
tributing terms of stationary phase in Eq. (B4) are either
those with φ+ or with φ~. __

We proceed by expanding φρ around pn,

= φρ+\(ρ-ΡηΫ

sna —
cos2a„

sma„ -(/>//>„-l )2

(B5)

The phase increments ε+ and ε are used for an positive
or negative, respectively, and are defined by ε + Ξ— |ττ
and ε~ = — π. We now substitute the expansion (B 5) into
Eq. (B4),

maX

 + Λ + 00

,L) = — 2ikF8x Σ ßp Ap expt/ε +ikFLsman)J dp exp
cos2a„

sman

(B6)

Here we have made the usual approximations of replacing ßp and Ap by their values at p =p„, and the series in p by an
Integration. Evaluating this Gaussian integral, we find

1/2

P»
sna„

ikpL cos a„
(B7)

which reduces to the result (21) discussed in See. V, if one
uses the identity exp(/e±)(— ; sina„ )1/2 = exp( — ji

- 4

3. Point-contact conductance

We calculate the two-terminal conductance G of a
point contact which is narrower than λ^·, under the as-
sumption of See. V that the current through the point
contact is given by ε|9Ψ/θ* 2. Here, ε is an undeter-
mined parameter (with dimensions of m4 s"1), and Ψ is
the wave function which is unperturbed by the presence
of the point contact. The derivative normal to the 2D
EG boundary is evaluated at the position of the point
contact.

In the WKB approximation the wave function Ψη of
the «th edge channel close to the 2D EG boundary can be
expanded in an incident (in) and a reflected (ref) plane
wave, *„ =vi/in + vi/ref, with

sina —χ cosa

and

r.ref—= constXe\p[ikF(y sina„ +x cosa„

Here, an is the angle with the χ axis under which the cor-
responding skipping orbit is reflected from the boundary.
It follows from this expansion that (at χ = 0)

— 4

= 4(kFcosa„)2 Ψ ί η |2

= 4(kj./vF)cosan<i>[n , (Β8)

where Φ"1 is the flux of electrons incident on the bound-

I

ary. Semiclassically, this flux is the ratio of the total
current /„ carried by the nth edge state and the chord
length 2/cyclcosa„ of the corresponding skipping orbit, so
that

= (2kp/vFlcycl}In (B9)

We have thus found that in this approximation a fraction

T„=e(2kp/vFlcycl) (B 10)

of the current is transmitted through the point contact.
Note that this transmission probability Tn turns out to be
independent of the edge-state quantum number n.

The conductance of the point contact is given by the
two-terminal Landauer formula11'21'22

2ez

h 71ma> (Bll)

The conductance given by Eq. (17) in See. V is obtained
from Eq. (Bll) by approximating the number of occupied
edge states nmäli~jkplcycl. The point-contact conduc-
tance is then independent of the magnetic field. The
discreteness of nmax , neglected in this approximation,
may lead to a small modulation of the conductance
periodic in l /B (similar to the Shubnikov-de Haas oscil-
lations). Since this modulation has no definite B periodi-
city, it would not significantly aifect our calculations and
is ignored.

APPENDIX C: CALCULATION OF THE CAUSTICS

The caustics in electron focusing are points in the 2D
EG at which the cross section of a particle flux tube from
the injector vanishes. Consider a flux tube consisting of
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trajectones leavmg the mjector at angles with the χ axis
between a and α + δα The flux tube is bounded by two
trajectones ra and ra+8a, where τα(φ,ρ) is defined by

χ = /cycl ( cos</> — sma ) ,

—l )cosa ]
(CD

Here, —π<φ<π, but only that part of the trajectory
with χ > 0 plays a role An mtersection of these two tra-
jectones is a caustic By equatmg τα(φ,ρ) = τα+δα(φ
+ 8φ,ρ), for infinitesimal δα and δφ, we find that the
caustics are pomts on τα(φ,ρ) with — tan^>
= (2/7 — l)~'cotana^M By elimmatmg φ we obtain the
required equation for the caustics,

(C2)
y=lc,d[(2P-l)cosa-u(l+u2rl/2]

Here, — \ττ < a < \π, and the integer p > 2 for positive α
but p— l for negative α

The caustics are plotted m Fig 16 (bottom), up to
p = 3 Note, äs a check on the calculation, that the
curves follow the regions of high density of trajectones
apparent m Fig 16 (top) We see two famihes of caustics
one family for trajectones which leave the mjector at a
negative angle α with the χ axis [curves from the pomt
(2/cycl,0) to the 2D EG boundary], and one for trajec-
tones with positive α (curves with a cusp, which begin
and end on the 2D EG boundary) Each trajectory passes
once through a caustic between two subsequent
reflections at the boundary In addition, the trajectones
with negative α (but not those with positive a) pass once
through a caustic pnor to the first reflection This is
what we need to know for the WKB calculation m Ap-
pendix B

O B

FIG 16 Top skippmg orbits m a 2D EG The gate definmg
the mjector (i) and collector (c) pomt contacts and the 2D EG
boundary is shown schematically m black For clanty, the tra-
jectones are drawn only up to the third specular reflection Bot
tom calculated location of the caustic curves

APPENDIX D: LANDAUER-BUTTIKER
FORMALISM FOR ELECTRON FOCUSING

The Landauer-Buttiker (LB) formahsm1 1 relates resis-
tances to transmission probabihties mto current and volt-
age probes Since this method has not been used previ-
ously for the electron-focusmg problem, we will descnbe
it here in some detail The usual approach55 is to solve
the Boltzmann transport equation for the charge and
current density to linear order in the apphed electnc
field, while determimng the noneqmhbnum electnc field
distnbution self-consistently from the requirement of
charge neutrahty The LB approach, in contrast, yields
the potential of the voltage piobes directly, without the
need to first calculate the electnc field distnbution itself
In this way the resistances are obtamed entirely fiom
equihbrium pioperties of the System, äs it should be for a
linear-response calculation The equivalence of the LB
resistance formula in terms of transmission probabihties
to the Kubo formula in terms of Green's functions has
been demonstrated by Stone et al21 56

To derive the LB formula for the electron-focusmg ex-
penment, we consider the geometry in Fig 17 of a three-
termmal conductor with pomt contacts m two of the
probes In order to have well-defined initial and final
states for the scattermg problem, the probes are connect-
ed via perfect leads (or electron waveguides) to reservoirs
which have a constant electrochemical potential We
denote by μ, and μ€ the chemical potentials of the two
reservoirs connected, respectively, to the mjector and col-
lector pomt contact, and by μά the chemical potential of
the third reservoir (the current dram) Followmg
Buttiker,11 we can relate the currents Ia (a = i,c,d) m the
three leads to these chemical potentials via the transmis-
sion probabihties Τα_^ (from reservoir α to reservoir ß)

FIG 17 Three-termmal conductor m the electron-focusmg
geometry Three reservoirs at chemical potentials μ,, μ€, and
μά are connected by leads to a wide 2D EG Two of the leads
contam a nanow constnction (shown m black) The current
flows from reservoir i to reservoir d, while reservoir c draws no
net current
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and reflection probabilities Ra (from reservoir α back to
the same reservoir). These equations are of the form11

—I„ = (N„—R„^„— Υ Γο „μβ . (Dl)

ground potential μ(.=μά, and similarly for Gc.] With
this Identification, Eq. (D3) takes a particularly simple
form

1

Here, Na is the number of occupied (spin-degenerate)
transverse wave guide modes in the lead a, also referred
to äs the number of channels. We now impose the condi-
tion that the collector draws no net current, which im-
plies /c=0 and Id = ~It>

 and choose our zero of energy
such that μα—0. We then find from Eq. (Dl) the equa-
tions

G,GC

(D4)

NC-RC^'

h_ .

2e ''

(D2a)

(D2b)

In the electron-focusing experiment we can neglect the
transmission probability rc_, from collector to injector,
since electrons leaving the collector point contact are
deflected away from the injector towards the current
drain by the magnetic field. We then obtain for the ratio
of collector voltage Vc =μ€ /e (measured relative to the
potential of the current drain) to injected current /, the
result

T,

2e 2 -
(D3)

The injector-collector reciprocity in electron focusing,
discussed in See. IV C, is evident from Eq. (D4), since G,
andGc are Symmetrie in B and11 T,^c(B) = Tc_rl(— B).

Equation (D4) is derived for a three-terminal measure-
ment (with the sign of the magnetic field chosen such that
electrons are focused from the injector towards the col-
lector). In a four-terminal configuration (with the same
sign of the magnetic field), the chemical potential of the
collector is measured relative to the chemical potential μυ

of an additional voltage probe, rather than relative to the
current drain. If this voltage probe is along the 2D EG
boundary between the current drain and the injector,
then μα =μα (under conditions of vanishing longitudinal
resistance in the 2D EG), so that Eq. (D3) still applies.
This is the case of a generalized Hall-resistance measure-
ment, discussed in See. IV B. If, on the other hand, the
voltage probe is between the drain and the collector, then
μ0 —μί/=6ΐιΚΗ is the normal Hall-potential difference in
the 2D EG (with RH—h/2e2NL determined by the num-
ber NL of occupied Landau levels in the 2D EG). We
then find, instead of Eq. (D4),

The quantities (2e2/h)(N,-R,) and (2e2/h)(Nc-Rc)
can be interpreted äs the two-terminal conductances G,
and G,, of the injector and collector point contact, respec-
tively. [More precisely, Οι=βΙι/(μ,—μ(ί), with the con-
straint that collector and drain contact are at a common

h G,GC

J_

Nr

(D5)

Equation (D5) corresponds to the case of a generalized
longitudinal-resistance measurement, also discussed in
See. IV B.
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